dlifgliltlall

U
i 0
VAX/VM

Order No. AA-DO1

S
System Services
Reference Manual
8A-TE
11nl
1nl
i
1

VAXII

August 1978
This manual describes the VAX/VMS system services.
It provides coding conventions, examples of how to

use system services, and detailed reference information
on the arguments required by each system service.

VAX/VMS
System Services
Reference Manual
Order No. AA-DO18A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.
OPERATING SYSTEM AND VERSION: VAX/VMS V01

SOFTWARE VERSION: VAX/VMS V01

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

Corporation.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

First Printing, August 1978

Copyright C) 1978 by Digital Equipment Corporation

The postage-prepaid READER'S
document requests the user's
paring future documentation.

The following are trademarks

DIGITAL
DEC

PDP

DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet

COMMENTS form on the last page of this
critical evaluation to assist us in pre-

of Digital Equipment Corporation:

DECsystem~-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL

INDAC

LAB-8
DECSYSTEM-20
RTS-8

VMS

IAS

6/79-14

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI

i

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

N

o

NN
.
N =

w

> WWwWwwwwww
e e o o s s e o
oJovn W

L S A A i S i

[SO SO SO N NS

] [. (]
HEREFPFHEFEFRPRHEEOONOURWNH
oJoaUlbsWN

CONTENTS

INTRODUCTION TO SYSTEM SERVICES

WHO CAN USE SYSTEM SERVICES: PRIVILEGE AND
PROTECTION
SUMMARY OF VAX/VMS SYSTEM SERVICES

CALLING THE SYSTEM SERVICES

MACRO CODING
FORTRAN CODING

HOW TO USE SYSTEM SERVICES

EVENT FLAG SERVICES

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES
LOGICAL NAME SERVICES

INPUT/OUTPUT SERVICES

PROCESS CONTROL SERVICES

TIMER AND TIME CONVERSION SERVICES
CONDITION HANDLING SERVICES

MEMORY MANAGEMENT SERVICES

SYSTEM SERVICE DESCRIPTIONS

$ADJSTK - ADJUST OUTER MODE STACK POINTER
$ADJWSL - ADJUST WORKING SET LIMIT

$ALLOC - ALLOCATE DEVICE

SASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

$ASCTIM - CONVERT BINARY TIME TO ASCII STRING
$ASSIGN - ASSIGN I/O CHANNEL

$BINTIM - CONVERT ASCII STRING TO BINARY TIME
$BRDCST - BROADCAST

$CANCEL - CANCEL I/O ON CHANNEL

$CANEXH - CANCEL EXIT HANDLER

$CANTIM = CANCEL TIMER REQUEST

$CANWAK —-' CANCEL WAKEUP -
$CLREF - CLEAR EVENT FLAG

$CMEXEC - CHANGE TO EXECUTIVE MODE

$CMKRNL - CHANGE TO KERNEL MODE

$SCNTREG - CONTRACT PROGRAM/CONTROL REGION
$CRELOG - CREATE LOGICAL NAME

SCREMBX - CREATE MAILBOX AND ASSIGN CHANNEL
$CREPRC - CREATE PROCESS

SCRETVA - CREATE VIRTUAL ADDRESS SPACE
SCRMPSC -~ CREATE AND MAP SECTION

$DACEFC - DISASSOCIATE COMMON EVENT FLAG CLUSTER
$DALLOC - DEALLOCATE DEVICE

$DASSGN - DEASSIGN I/O CHANNEL

iii

4.44

4 53

4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66

4.67
4.68
4.69
4.70
4.71
4.72

4.73

4.74
4.75
4.76

CONTENTS (Cont.)

$DCLAST - DECLARE AST

$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY
MODE HANDLER)

$DCLEXH - DECLARE EXIT HANDLER

$DELLOG - DELETE LOGICAL NAME

$DELMBX - DELETE MAILBOX

$DELPRC - DELETE PROCESS’

$DELTVA - DELETE VIRTUAL ADDRESS SPACE
$DGBLSC - DELETE GLOBAL SECTION

$DLCEFC - DELETE COMMON EVENT FLAG CLUSTER
SEXIT - EXIT

SEXPREG - EXPAND PROGRAM/CONTROL REGION
$FAO - FORMATTED ASCII OUTPUT

SFORCEX - FORCE EXIT

$GETCHN - GET I/O CHANNEL INFORMATION
$GETDEV - GET I/0 DEVICE INFORMATION

$GETJPI - GET JOB/PROCESS INFORMATION
$GETMSG - GET MESSAGE

$GETTIM - GET TIME

$SHIBER - HIBERNATE
SINPUT - QUEUE INPUT REQUEST AND WAIT FOR EVENT

"FLAG

$LCKPAG - LOCK PAGES IN MEMORY

SLKWSET - LOCK PAGES IN WORKING SET

$MGBLSC - MAP GLOBAL SECTION

$NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME
$OUTPUT - QUEUE OUTPUT REQUEST AND WAIT FOR
EVENT FLAG

$PURGWS - PURGE WORKING SET

$SPUTMSG - PUT MESSAGE

$QIO - QUEUE I/O REQUEST

$QIOW - QUEUE I/O REQUEST AND WAIT FOR EVENT
FLAG

SREADEF - READ EVENT FLAGS

SRESUME - RESUME PROCESS

$SCHDWK - SCHEDULE WAKEUP

$SETAST - SET AST ENABLE

SSETEF - SET EVENT FLAG

$SETEXV - SET EXCEPTION VECTOR

$SETIMR - SET TIMER

SSETPRA - SET POWER RECOVERY AST

$SETPRI - SET PRIORITY

$SETPRN - SET PROCESS NAME

$SETPRT - SET PROTECTION ON PAGES

$SETRWM - SET RESOURCE WAIT MODE

$SETSFM - SET SYSTEM SERVICE FAILURE EXCEPTION
MODE

$SETSWM - SET PROCESS SWAP MODE

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER
$SNDERR - SEND MESSAGE TO ERROR LOGGER
$SNDOPR - SEND MESSAGE TO OPERATOR

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER
$SUSPND - SUSPEND PROCESS

STRNLOG - TRANSLATE LOGICAL NAME

$ULKPAG - UNLOCK PAGES FROM MEMORY

SULWSET - UNLOCK PAGES FROM WORKING SET
SUNWIND - UNWIND CALL STACK

iv

Page
4-57

4-58
4-60
4-62
4-64
4-66
4-68
4-70
4-72
4-73
4-74
4-76
4-90
4-92
4-95
4-97
4-102
4-104
4-105

4-106
4-107
4-109
4-111

4-114

4-116
4-117
4-118
4-~124

4-127
4-128
4-129
4-131
4-133
4-134
4-135
4-137
4-139
4-140
4-142
4-143
4-145

4-146
4-147
4-148
4-153
4-154
4-159
4-169
4-171
4-173
4-175
4-177

P

e

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

4.77
4.78
4.79

4.81

.
N =

w

B o» » B
[o) N2 BN =N

~

wN -

wwwwwwc;:wwwwws—a

|
HHFROVoOoNOULs WD
N O

T
e
= W

3-15

3-16"

3-17
3-18
3-19

CONTENTS (Cont.)

Page

$UPDSEC - UPDATE SECTION FILE ON DISK 4-179
SWAITFR - WAIT FOR SINGLE EVENT FLAG 4-182
SWAKE - WAKE 4-183
SWFLAND - WAIT FOR LOGICAL AND OF EVENT FLAGS 4-185
$SWFLOR - WAIT FOR LOGICAL OR OF EVENT FLAGS 4-186
SYSTEM SYMBOLIC DEFINITION MACROS A-1
USING SYSTEM SYMBOLS A-2
$TODEF MACRO - SYMBOLIC ‘AMES FOR I/O FUNCTION
CODES A-2
$MSGDEF MACRO - SYMBOLIC NAMES FOR SYSTEM
MAILBOX MESSAGES A-6
$SPRDEF MACRO - SYMBOLIC NAMES FOR PROCESSOR
REGISTERS . A-7
$PRTDEF - HARDWARE PROTECTION CODE DEFINITIONS A-7
$PSLDEF MACRO - PROCESSOR STATUS LONGWORD SYMBOL
DEFINITIONS . A-8
$SSDEF MACRO - SYMBOLIC NAMES FOR SYSTEM STATUS
CODES A-8
PROGRAM EXAMPLES B-1
QUICK REFERENCE SUMMARY OF SYSTEM SERVICES c-1
MACRO FORMS V c-1
FORTRAN FORMS c-2
SYSTEM SERVICE MACROS c-3

Index-1

FIGURES

How to Use This Book

FORTRAN Interpretation of MACRO Examples
Using Local Event Flags

Example of a Common Event Flag Cluster
Example of an AST

The AST Service Routine

Logical Name Table Entries

Synchronizing I/0 Completion

Example of Terminal Input and Output
Device Allocation and Channel Assignment
Example of Using Formatted ASCII Output Program
Mailbox Creation and I/O

Defining Input and Output Streams for a
Subprocess

Process Hibernation

Example of an Exit Handler

Image Exit and Process Deletion

Using a Termination Mailbox

Timer Requests

Search of Stack for Condition Handler
Argument List and Arrays Passed to Condition
Handler ‘

FIGURE

TABLE

3-20
3-21
3-22
3-23
3-24
4-1

{ I T O I B B |

-hﬁhh(»UJM(»LUU)?!TFJH}JkJHpakap
WNHOUBWNHFHOOIOU®WN

EoN I S -
1 -
N Oy Ul s

CONTENTS (Cont.)

FIGURES (Cont.)

Example of Condition Handling Routines
Unwinding the Call Stack ,
Layout of Process Virtual Address Space
Creating and Mapping a Private Section
Creating and Mapping a Global Section
Format of Numeric Time Buffer

TABLES

Event Flag Services

AST (Asynchronous System Trap) Services
Logical Name Services)
Input/Output Services

Process Control Services ‘

Timer and Time Conversion Services
Condition Handling Services

Memory Management Services

Change Mode Services

FORTRAN Arguments for System Services

Summary of Event Flag and Cluster Numbers

Default Device Names for I/0O Services
Process Identification

Process Hibernation and Suspension
Summary of Exception Conditions
Sample Virtual Address Arrays

Arguments for the $CRMPSC System Service

Summary of FAO Directives

How FAO Determines Output Field Lengths and

Fill Characters .
Item Codes for Job/Process Information
Format of Accounting Log File Records

Request Types for Symbiont Manager Messages

Options for Symbiont Manager Messages

vi

Page

3-72
3-75
3-78
3-86
3-88
4-114

PREFACE

This manual provides users of the VAX/VMS operating system with
detailed usage and reference information on the system services.

VAX/VMS system services can be wused only in programs written in
languages that produce native code for the VAX-11/780 hardware. These
languages are:

VAX-11 FORTRAN IV-PLUS
VAX-11 MACRO

INTENDED AUDIENCE

This manual is intended for system and application programmers who are
already familiar with VAX/VMS system concepts. For an overview of the
operating system and an introduction to some of the concepts used in
system services, see the VAX/VMS Summary Description.

STRUCTURE OF THIS DOCUMENT

This manual is organized into four chapters and three appendixes, as
follows:

o Chapter 1 contains introductory information: it presents
overviews of the various categories of system services, and
summarizes the services in each category.

° Chapter 2 describes the conventions used to code calls to
system services. It discusses the macro forms for coding in
VAX-11 MACRO, and tells how to call the services from a
program written in VAX-11 FORTRAN IV-PLUS. :

° Chapter 3 contains usage information intended to guide new
users in understanding how the system services work and how
to use them.

® Chapter 4 provides detailed reference information on each
system service. The descriptions are presented in
alphabetical order, for ease of reference.

° Appendix A lists the system-provided macro instructions that
define symbolic names for frequently used system constants.

vii

) Appendix B contains sample programs that use various system
services. .

° Appendix C summarizes the system-service formats, for easy
reference.

See Figure 1 for an illustration of how to use this book.

Read Chapter 1 for an overview
of all services; decide which
service(s) you want to use.

Do you
understand the
rules and conventions
for coding calls to

system services?

Read Chapter 2 for
coding conventions
and examples.

Do you need
more information
about how a service or
group of services
works?

Read the section-of Chapter 3
that gives usage information
and examples of the services.

To code a call to a system
service, read the reference
description of the service
in Chapter 4.

Figure 1 How to Use This Book

viii

e

R

ASSOCIATED DOCUMENTS
The following documenﬁs are prerequisite for
e All Users:

VAX/VMS Summary Description

e MACRO Programmers:

VAX-11 MACRO Language Reference Manual
VAX-11 MACRO User's Guide

e FORTRAN Programmers:

VAX-11 FORTRAN IV-PLUS Language Reference Manual
VAX-11 FORTRAN IV-PLUS User's Guide

The following documents, which are referred to in this manual,
also be useful:

e VAX/VMS Command Language User's Guide

e Introduction to VAX-1l Record Management Services

e VAX-11 Record Management Services Reference Manual

e VAX/VMS I/O User's Guide

e DECnet-VAX User's Guide

For a complete list of VAX-11 documents, including descriptions
each, see the VAX-1ll Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

The following syntactical conventions are used in this manual:

may

of

° Brackets ([1) in system service descriptions indicate

optional arguments.

° Horizontal ellipses (...) indicate: (1) when shown in

the

format of a system service call, that additional optional
arguments have been omitted; (2) when shown in an example,

that additional arguments required by a service but
pertinent to the example are not shown.

° Vertical ellipses in coding examples indicate that lines
code not pertinent to the example are not shown.
example:

not

of
For

° Uppercase letters in a system service format show keywords
that must be entered as shown; lowercase 1letters show

variable data.

ix

N’

S—

CHAPTER 1

INTRODUCTION TO SYSTEM SERVICES

System services are procedures that the VAX/VMS operating system uses
to control resources available to processes; to provide for
communication among processes; and to perform basic operating system
functions, such as the coordination of input/output operations.

Although most system services are used primarily by the operating
system itself on behalf of logged-in users, many are available for
general use and provide techniques that can be wused in application
programs. For example, when you 1log intq/€he system, the Create
Process system service is called to create a process on your behalf.
You may, in turn, code a program that calls the Create Process system
service to create a subprocess. 4

1.1 WHO CAN USE SYSTEM SERVICES: PRIVILEGE AND PROTECTION

Many system services are available and suitable for application
programs, but the use of some services must be restricted to protect:

° The performance of the system
e The integrity of user procesées

For example, because the creation of permanent mailboxes uses system
dynamic memory, the unrestricted use of permanent mailboxes could
decrease the amount of memory available to other users. Therefore,
the ability to create permanent mailboxes is controlled: a user must
be specifically assigned the privilege to use the Create Mailbox
system service to create a permanent mailbox.

The various controls and restrictions applied to system service usage
are described below. The tables in Section 1.2 that summarize the
system services note any restrictions on the use of specific services.

1.1.1 User Privileges and Resource Quotas

The system manager, who maintains the user authorization file for the
system, grants privileges to use protected system services. The user
authorization file contains, in addition to profile information on
each user, a list of specific user privileges and resource guotas.

When you log into the system, the privileges and quotas you have been
assigned are associated with the process created on your behalf.
These privileges and quotas are applied to every image that the
process executes.

INTRODUCTION TO SYSTEM SERVICES

When an image issues a call to a system service that is protected by
privilege, the privilege 1list is checked. If you have been granted
the specific privilege required, the image is allowed to execute the
system service; otherwise, a status code indicating an error is
returned.

When a system service that uses a resource controlled by a quota is
called, the process's quota for that resource is checked. If the
process has exceeded its quota, or if it has no quota allotment, an
error status code may be returned. In some cases, the process may be
placed in a wait state until the resource becomes available; see
Section 2.1.5.4, "Special Return Conditions."

1.1.2 Control by Group Association

Some system services provide techniques for coordinating and
synchronizing the execution of different processes. These services
require cooperating processes to be in the same group; that is, the
group fields in the user identification codes (UICs) for the processes
must match.

For example, event flags are used to post the occurrence of events in
a program and can be shared among cooperating processes. However, the
processes that share a cluster of event flags must be in the same
group.

1.1.3 Protection by Access Mode

A process can- execute at any one of four access modes: user,
supervisor, executive, or kernel. The access modes determine a
process's ability to access pages of virtual memory. Each page has a
protection code associated with it, specifying the type of access --
read, write, or no access -- allowed for each mode. The VAX-11/780
Architecture Handbook provides additional information on access modes.

For the most part, user-written programs execute in user mode; system
programs executing at the wuser's request (system services, for
example) may execute at one of the other three, more privileged,
access modes.

In some system service calls, the access mode of the caller is
checked. For example, when a process tries to cancel timer requests,
it can cancel only those requests that were issued from the same or
less privileged access modes. For example, a process executing in
user mode cannot cancel a timer request made from supervisor,
executive, or kernel mode, which are more privileged access modes.

©

INTRODUCTION TO SYSTEM SERVICES

1.2 SUMMARY OF VAX/VMS SYSTEM SERVICES

The following sections summarize the VAX/VMS system services in
functional groups, with tables 1listing the services that belong in
each group. Each table lists:

) The full name of the service and thé short, macro name by
which it is alphabetized in this book.

® The functions performed by the service, with distinctions
based on privilege (where applicable).

° Restrictions on the use of the service, if any. This column
is keyed as follows:

None indicates that no restriction is placed on
the use of the service for this function.

XXX privilege indicates the specific user privilege that is
required to use the service for the requested

function.

yyy quota indicates the specific resource quota that is
required to use the service for the requested
function.

Access mode indicates that this service uses the access

mode of the caller to determine whether the
caller can execute the function requested.

UIC protectibn indicates that this service may restrict
access based on the caller's UIC.

For detailed information about a restriction applied to any
specific service, see that service's description in Chapter
4.

Chapter 3 provides additional information, including examples, on the
services listed in Tables 1-1 through 1-8.

1.2.1 Event Flag Services

A process can use event flags to synchronize sequences of operations
in 'a program. Event flag services clear, set, and read event flags,
and place a process in a wait state pending the setting of an event
flag or flags.

Table 1-1 lists the event flag services.

1.2.2 AST (Asynchronous System Trap) Services

Process execution can be interrupted by events (such as I/0
completion) for the execution of designated subroutines. These
software interrupts are called asynchronous system traps (ASTs)
because they occur asynchronously to process execution. System
services are provided so that a process can control the handling of
ASTs.

Table 1-2 lists the AST services.

INTRODUCTION TO SYSTEM SERVICES

1.2.3 Logical Name Services

Logical name services provide a generalized technique for maintaining
and accessing character string 1logical name and equivalence name
pairs. Logical names can provide’device-independence for system and
application program input and output operations.

Table 1-3 lists the logical name services.

1.2.4 1Input/Output Services
I/0 services perform input and output operations directly, rather than
through the file handling services of the VAX-11l Record Management
Services (RMS). I/0 services:

® Perform logical and virtual input/output operations

) Format output lines converting binary numeric values to ASCII
strings and substituting variable data in ASCII strings

° Create mailboxes for interprocess communication

° Perform network operations

® Queue messages to system processes

Table 1-4 lists the I/0 services. The following manuals provide
additional information on aspects of input/output operations not

covered in this manual:

° Introduction to VAX-11l Record Management Services

® VAX-11 Record Management Services Reference Manual

° VAX/VMS I/0 User's Guide

® DECnet-VAX User's Guide

1.2.5 Process Control Services

Process control services allow you to create, delete, and control the
execution of processes.

Table 1-5 lists the process control services.

1.2.6 Timer and Time Conversion Services

Timer services schedule program events for a particular time of day,
or for after a specified interval of time has elapsed. The time
conversion services provide a way to obtain and format binary time
values for use with the timer services.

Table 1-6 lists the timer and time conversion services.

INTRODUCTION TO SYSTEM SERVICES

1.2.7 Condition Handling Services

Condition handlers are procedures that can be designated to receive
control when a hardware or software exception condition occurs during
image execution. Condition handling services designate condition
handlers for special purposes. ' : '

Table 1-7 lists the condition handling services.

1.2.8 Memory Management Services

Memory management services provide ways to use the virtual address
space available to a program. Included are services that:

° Allow an image to increase or decrease the amount of wvirtual
memory available

° Control the paging and swapping of virtual memory

° Create and access in memory files that contain shareable code
or data

Table 1-8 lists the memory management services.

1.2.9 Change Mode Services

Change mode services alter the access mode of a .process to a more
privileged mode to execute particular routines. These services are
used primarily by the operating system.

Table 1-9 lists the change mode services.

INTRODUCTION TO SYSTEM SERVICES

Table 1-1
Event Flag Services

Service Name

Function (s)

Restriction(s)1

Associate Common
Event Flag Cluster
($ASCEFC)

Creates a temporary common event flag
cluster :

TQELM quota

Creates a permanent common event flag
cluster

PRMCEB privilege

Establishes association with an existing
common event flag cluster

Group association

Disassociate Common
Event Flag Cluster
($DACEFC)

Cancels association with a common event
flag cluster

None

Delete Common Event
Flag Cluster
(SDLCEFC)

Marks a permanent common event flag
cluster for deletion '

PRMCEB privilege
Group association

Set Event Flag
($SETEF)

Turns on an event flag in a process-local
event flag cluster

None

Turns on an event flag in a common event
flag cluster

Group association

Clear .Event Flag
(SCLREF)

Turns off an event flag in a process-local
event flag cluster

None

Turns off an event flag in ‘a common event
flag cluster .

Group association

Read Event Flags
(SREADEF)

Returns the status of all event flags in
a process-local event flag cluster

None

Returns the status of all event flags in
a common event flag cluster

Group association

Wait for Single
Event Flag
(SWAITFR)

Places the current process in a wait state
pending the setting of an event flag in a
process-local event flag cluster

None

Places the current process in a wait state
pending the setting of an event flag in a
common event flag cluster

Group association

Wait for Logical OR
of Event Flags

Places the current process in a wait state
pending the settlng of any one of a speci-

None

(SWFLOR) fied set of flags in a process-local event
flag cluster
Places the current process in a wait state Group association
pending the settlng of any one of a speci-
fied set of flags in a common event
flag cluster
Wait for Places the current process in a wait state None

Logical AND
of Event Flags
($SWFLAND)

pending the setting of all specified
flags in a process-local event flag
cluster

Places the current process in a wait
state pending the setting of all specified
flags in a common event flag cluster

Group association

1

For an explanation of the terms used in this column, see Page 1-3.

INTRODUCTION TO SYSTEM SERVICES

Table 1-2

AST (Asynchronous System Trap) Services

Service Name

Function (s)

Restriction(s)l

Set AST Enable
($SETAST)

Enables or disables the delivery of ASTs

None

Declare AST
($DCLAST)

Queues an AST for delivery

ASTLM quota
Access mode

Set Power Recovery
AST ($SETPRA)

Establishes AST routine to receive control
following power recovery condition

ASTLM quota

For an explanation of the terms used in this column, see Page 1-3.

Table 1-3
Logical Name Services

Service Name

Function(s)

Restriction(s)1

Create Logical
Name ($CRELOG)

Places logical name/equivalence name
pair in process logical name table

Access mode

Places logical name/equivalence name
pair in group logical name table

GRPNAM privilege
Group association

Places logical name/equivalence name
pair in system logical name table

SYSNAM privilege

Delete Logical Name
($DELLOG)

Removes logical name/equivalence name
pair from process logical name table

None

Removes logical name/equivalence name
pair from group logical name table

GRPNAM privilege
Group association

Removes logical name/equivalence name
pair from system logical name table

SYSNAM privilege

Translate Logical
Name ($TRNLOG)

Searches logical name tables for a specified
logical name and return its equivalence
name when the first match is found

None

For an explanation of the terms used in this column, see Page 1-3.

INTRODUCTION TO SYSTEM SERVICES

Table 1-4
Input/Output Services

Service Name

Function(s)

Restriction(s)l

Assign I/0 Channel | Establishes a path for an I/O request None
($ASSIGN) .
Establishes a path for network operations NETMBX privilege
Deassign Releases linkage for an I/O path Access mode
I/0 Channel
($DASSGN) Releases a path from the network NETMBX privilege
Queue I/0 Request Initiates an input or output operation Access modez
($QI10)
2

Queue I/O Regquest
and Wait for Event

Initiates an input or output operation and
causes the process to wait until it is

Access mode

(SALLOC)

process and its subprocesses

Flag (SQIOW) complete before continuing execution

$INPUT Initiates virtual input operation and waits Access mode2
for completion

SOUTPUT Initiates virtual output operation and waits Access mode2
for completion

Formatted ASCII Performs ASCII string substitution, None

OQutput ($FAO) and converts numeric data to ASCII
representation and substitutes in

Formatted ASCII output

Output with List

Parameter ($FAOL)

Allocate Device Reserves a device for exclusive use by a- None

Reserves a spooled device for exclusive use

ALLSPOOL privilege

Deallocate Device
($DALLOC)

Relinquishes exclusive use of a device

Access mode

Get I/O Channel
Information
(SGETCHN)

Provides information about a device to which
an I/0 channel has been assigned

Access mode

Get I/O Device
Information
(SGETDEV)

Provides information about a physical device

None

Cancel I/0
on Channel
(SCANCEL)

Cancels pending I/O requests on a channel

Access mode

1
2

require the PHY_IO,

For an explanation of the terms used in this column, see Page 1-3.

direct I/O (DIOLM), buffer space (BYTLM), or AST limit (ASTLM).

Depending on the specific nature of the input or output request, the service may
LOG_IO, or MOUNT privileges, or quotas for buffered I/0 (BIOLM),

Li‘nj_fél_ i

INTRODUCTION TO SYSTEM SERVICES

~ Table 1-4 (Cont.)
Input/Output Services

Service Name

Function (s)

Restriction(s)1

Create Mailbox

and Assign

Channel
(SCREMBX)

Creates a temporary mailbox

BYTLM/Quota
TMPMBX privilege

Creates a permanent mailbox

PRMMBX privilege

Delete Mailbox

Marks a permanent mailbox for deletion

PRMMBX privilege

(SDELMBX) Access mode
Broadcast Sends a high-priority message to an None
($BRDCST) assigned terminal

Sends a high-priority message to a
nonassigned terminal or to all
terminals

OPER privilege

Send Message to
Accounting Manager
(SSNDACC)

Controls accounting log file activity

OPER privilege

Writes an arbitrary message to the
accounting log file

None

Send Message to
Symbiont Manager
(SSNDSMB)

Requests symbiont manager to initialize,
modify, or delete a printer or
batch job queue, or a device queue

OPER privilege

Requests symbiont manager to delete or
change characteristics of a queued file

Group association

Send Message to
Operator
($SNDOPR)

Writes a message to designated operator (s)
terminal (s)

None

"Enables or disables an operator's terminal,

sends a reply to a user request or initializes
the operator's log file

OPER privilege

Send Message to
Error Logger

Writes arbitrary data to the system error
log file

BUGCHK privilege

(SSNDERR)

Get Message Returns text of system error message from None
(SGETMSG) message file

Put Message Writes a message to the current output and None

($PUTMSG)

error devices

1 For an explanation of the terms used in this column, see Page 1-3.

1-9

INTRODUCTION TO SYSTEM SERVICES

Table 1-5
Process Control Services

Service Name

Function(s)

Restriction(s)l

Create Process Creates a subprocess PRCLM quota
(SCREPRC)
Creates a detached process DETACH privilege
Delete Process Deletes the current process or a subprocess None
(SDELPRC)
Deletes another process in the same GROUP privilege
group Group association
Deletes any process in the system WORLD privilege
Suspend Process Makes the current process or a subprocess None
($SUSPND) nonexecutable and unable to receive ASTs
until a subsequent resume or delete request
Makes another process in the same group GROUP privilege
nonexecutable and unable to receive ASTs Group association
until a subsequent resume or delete request
Makes any process in the system nonexecutable WORLD privilege
and noninterruptible until a subsequent
resume or delete request
Resume Process Restores executability of a suspended subprocess | None
(SRESUME)
Restores executability of a suspended process in | GROUP privilege
the same group Group association
Restores executability of any suspended process WORLD privilege
in the system
Hibernate ($HIBER) | Makes the current process dormant but able to None
receive ASTs until a subsequent wakeup
request
Wake ($SWAKE) Restores executability of the current None

process or a hibernating subprocess

Restores executability of a hibernating process
in the same group

GROUP privilege
Group association

Restores executability of any hibernating
process in the system

WORLD privilege

Schedule Wakeup

Wakes a process after a specified time

($SCHDWK) interval or at a specific time2
Cancel Wakeup Cancels a scheduled wakeup request2
($SCANWAK)
Exit (SEXIT) Terminates execution of an image and None
returns to command interpreter
Force Exit Causes image exit for the current process None

(SFORCEX)

or a subprocess

Causes image exit for a process in the same
group

GROUP privilege
Group association

Causes image exit for any process in the.
system

WORLD privilege

Declare Exit
Handler
($DCLEXH)

Designates a routine to receive control
when image exits

None

Cancel Exit
Handler
(SCANEXH)

Cancels a previously established exit handling
routine

Access mode

Set Process Name
(SSETPRN)

Establishes a text name string to be used
to identify the current process

None

1
2

For an explanation of the terms used in this column, see Page 1-3.

Functions performed by these services are listed in detail in Table 1-6.

INTRODUCTION TO SYSTEM SERVICES

Table 1-5 (Cont.)
Process Control Services

Service Name

Function(s)

Restriction(s)1

Set Priority
(SSETPRI)

Increases the execution priority for
any process

ALTPRI privilege

Changes the execution priority for the current
process or a subprocess

None

Changes the execution priority for a process
in the same group

GROUP privilege
Group association

Changes the execution priority for any
process in the system

WORLD privilege

Set Resource Wait Requests wait, or that control be returned None

Mode ($SETRWM) immediately, when a system service call
cannot be executed because a system
resource is not available

Get Job/Process Returns information about the current None

Information process

(SGETJPI)

Returns information about the current context GROUP privilege
of other processes in the same group Group association
Returns information about any other process in WORLD privilege
the system

1

For an explanation of the terms used in this column, see Page 1-3.

INTRODUCTION TO SYSTEM SERVICES

Table 1-6

Timer and Time Conversion Services

Service Name

Function(s)

Restriction(s)l

Get Time Returns the date and time in system None
(SGETTIM) format
Convert Binary Time|Converts a date and time from system None
to Numeric Time format to numeric integer values
($NUMTIM)
Convert Binary Time|Converts a date and time from system None
to ASCII String format to an ASCII string
(SASCTIM)
Convert ASCII Converts a date and time in an ASCII None

String to Binary
Time (SBINTIM)

string to the system date and time
format

Set Timer ($SETIMR)

Requests setting of an event flag or
queueing of an AST based on an absolute
or delta time value

TQELM quota2

Cancel Timer
Request
($CANTIM)

Cancels previously issued timer requests

Access mode

Schedule Wakeup
($SCHDWK)

Schedules a wakeup for the current process
or a hibernating subprocess

ASTLM quota

Schedules a wakeup for a hibernating
process in the same group

GROUP privilege
ASTLM quota .
Group association

Schedules a wakeup for any hibernating
process in the system

WORLD privilege
ASTLM quota

Cancel Wakeup
($SCANWAK)

Cancels a scheduled wakeup request for
the current process or a hibernating
subprocess

None

Cancels a scheduled wakeup request
for a hibernating process
in the same group

GROUP privilege °
Group association

Cancels a scheduled wakeup request
for any hibernating process in
the system

WORLD privilege

1
2

number ;

For an explanation of the terms used in this column, see Page 1-3.

Setting an event flag in a common event flag cluster requires
a timer request with an AST requires ASTLM quota.

1-12

association

based on

group

S

SYSTEM SERVICE DESCRIPTIONS

$SETPRT

4.64 S$SETPRT - SET PROTECTION ON PAGES

The Set Protection On Pages system service allows an image running ‘in
a process to change the protection on a page or range of pages.

Macro Format:

$SETPRT inadr ,[retadr] , [acmode] ,prot ,[prvprt]

High-Level Language Format:

SYSS$SSETPRT (inadr ,[retadr] ,[acmode] ,prot ,[prvprt])

inadr
address of a 2-longword array containing the starting and ending
virtual addresses of the pages on which protection is to be
changed. 1If the starting and ending virtual addresses are the
same, a single page 1is changed. Only the virtual page number
portion of the virtual address is used; the low-order 9 bits are
ignored.

retadr
address of a 2-longword array to receive the starting and ending
virtual addresses of the pages that had their protection changed.

acmode
access mode on behalf of which the request is being made. The
specified access mode is maximized with the access mode of the
caller. The resultant access mode must be equal to or more
privileged than the access mode of the owner of each page in
order to change the protection.

prot
new protection specified in bits 0 through 3 in the format of the
hardware page protection. The high-order 28 bits are ignored.
Symbolic names defining the protection codes are 1listed in
Appendix A, Section A.5 "S$SPRTDEF - Hardware Protection Code
Definitions."

If the protection is specified as 0, the protection defaults to
kernel read-only.

prvprt
address of a byte to receive the protection previously assigned
to the last page whose protection was changed. This argument is
useful only when protection for a single page is being changed.

4-143

SYSTEM SERVICE DESCRIPTIONS
$SETPRT - SET PROTECTION ON PAGES

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

1. The input address array cannot be read, or the output address
array or the byte to receive the previous protection cannot
be written, by the caller.

2. An attempt was made to change the protection of a nonexistent
page. i

SS$_EXQUOTA
The process exceeded its paging file quota while changing a page
in a read-only private section to a read/write page.)

SS$_IVPROTECT
The specified protection code has a numeric value of 1 or 1is
greater than 15. :

SS$_LENVIO
A page in the specified range is beyond the end of the program or
control region.

SS$_NOPRIV
A page in the specified range is in the system address space.

SS$_PAGOWNVIO ‘
Page owner violation. An attempt was made to change the
protection on a page owned by a more privileged access mode.

Privilege Restrictions:

For pages in global sections, the new protection can alter only
the accessibility of the page for modes less privileged than the
owner of the page.

Resources Required/Returned:

If a process changes any pages in a private section - from
read-only to read/write, the service uses the process's paging
file quota (PGFLQUOTA). :

Note:

If an error occurs while changing page protection, the return
array, 1f requested, indicates the pages that were successfully
changed before the error occurred. If no pages have been
affected, both longwords in the return address array contain a
-1.

4-144

S

et

INTRODUCTION TO SYSTEM SERVICES

Table 1-7
Condition Handling Services

Service Name

Function (s)

Restriction(s)1

Set Exception

Defines condition handlers to

Access mode

Vector receive control in case of hardware-
(SSETEXV) or software-detected exception conditions
Set System Service | Requests or disables generation of a software None
Failure Exception exception condition when a system service
Mode ($SETSFM) call returns an error or severe error
Unwind from Deletes a specified number of call frames None

Condition Handler
Frame (SUNWIND)

from the call stack following a
nonrecoverable exception condition

Declare Change
Mode or
Compatibility
Mode Handler
(SDCLCMH)

Designates a routine to receive control
when change mode to user instructions
are encountered

Access mode

Designates a routine to receive control
when change mode to supervisor
instructions are encountered

Access mode

Designates a routine to receive control
when compatibility mode exceptions
occur

None

1

For an explanation of the terms used in this column, see Page 1-3.

INTRODUCTION TO SYSTEM SERVICES

Table 1-8
Memory Management Services

Service Name

Function(s)

Restriction(s)l

Expand Program/ Adds pages at the end of the program or None
Control Region control region

(SEXPREG)
Contract Program/ Deletes pages from the end of the program or None
Control Region control region

(SCNTREG)
Create Virtual Adds pages to the virtual address space None
Address Space available to an image

(SCRETVA)
Delete Virtual Makes a range of virtual addresses None

Address Space
(SDELTVA)

unavailable to an image

Create and Map
Section
(SCRMPSC)

Identifies a disk file as a private section
and establishes correspondence between virtual
blocks in the file and the process's virtual
address space

Access mode

Identifies a disk file containing shareable
code or data as a temporary global section

and establishes correspondence between virtual
blocks in the file and the process's virtual
address space

Access mode

'

Identifies a disk file containing shareable
code or data as a permanent global section

and establishes correspondence between virtual
blocks in the file and the process's virtual
address space

PRMGBL privilege
Access mode

Identifies a disk file containing shareable
code or data as a system global section and
establishes correspondence between virtual
blocks in the file and the process's virtual
address space

SYSGBL privilege
Access mode

Update Section File
on Disk
($UPDSEC)

Writes modified pages of a private or
global section into the section
file

Access mode

Map Global Section
($MGBLSC)

Establishes correspondence between a global
section and a process's virtual address
space

UIC protection

Delete Global
Section ($DGBLSC)

Marks a permanent global section for deletion

PRMGBL privilege

Marks a system global section for deletion

SYSGBL privilege
Access mode

Lock Pages in
Working Set
(SLKWSET)

Specifies that particular pages cannot be
paged out of the process's working set

Access mode

Unlock Pages from
Working Set
(SULWSET)

Allows previously locked pages to be paged
out of working set

Access mode

Purge Working
Set (SPURGWS)

Removes all pages within a specified range
from the current working set

None

Lock Page in Memory
(SLCKPAG)

Specifies that particular pages may not be
swapped out of memory

User privilege
Access mode

1

For an explanation of the terms used in this column, see Page 1-3.

R

INTRODUCTION TO SYSTEM SERVICES

Table 1-8 (Cont.)
Memory Management Services

Service Name

Function(s)

Restriction(s)l

Unlock Page in
Memory (SULKPAG)

Allows previously locked pages to be swapped
out of memory

User privilege
Access mode

Adjust Working Set
Limit ($ADJWSL)

Changes maximum number of pages that the
current process can have in its working set

WSQUOTA quota

Set Protection on
Pages (SSETPRT)

Controls access to a range of virtual
addresses

Access mode

Set Process Swap
Mode ($SETSWM)

Controls whether or not the current process
can be swapped out of the balance set

PSWAPM privilege

1

For an explanation of the terms used in this column, see Page 1-3.

Table 1-9
Change Mode Services

Service Name

Function (s)

Restriction(s)l

Change to Executive
Mode (SCMEXEC)

Executes a specified routine in executive
mode

CMEXEC privilege
Access mode

Change to Kernel
Mode ($CMKRNL)

Executes a specified routine in kernel
mode

CMKRNL privilege
Access mode

Adjust Outer Mode
Stack Pointer
($ADJSTK)

Modifies the current stack pointer for a
less privileged access mode

Access mode

1

For an explanation of terms used in this column, see Page 1-3.

N

CHAPTER 2

CALLING THE SYSTEM SERVICES

System service procedures are called using the standard VAX-11/780
procedure calling conventions. The programming languages that
generate VAX-11/780 native mode instructions provide mechanisms for
coding the procedure calls. These languages, and supporting
documentation, are listed in the Preface.

When you code a system service <call, you must supply whatever
arguments the service requires.

When the service completes execution, it returns control to the
calling program with a return status code. The caller should analyze
the status code to determine the success or failure of the service
call, so it can alt:r the flow of execution, if necessary.

This chapter provides all the information you need to code «calls to
system services.

If you are a VAX-11 MACRO programmer, you should read Section 2.1 for
details on how to code the macro instructions that generate system
service calls.

If you are a VAX-11] FORTRAN IV-PLUS programmer, you should read
Section 2.2 for details on how to code subroutine CALL statements or
function references.

Each of these sections also discusses conventions for coding arguments
and methods of checking the successful completion of a system service.

CALLING THE SYSTEM SERVICES

2.1 MACRO CODING

System service macros generate argument lists and CALL instructions to
call system services. These macros are located in the system library
STARLET.MLB; this library is searched automatically for unresolved
references when you assemble a source program.

Knowledge of MACRO rules for assembly language coding is required for
understanding the material presented in this section. The VAX-11
MACRO Language Reference Manual and the VAX-11 MACRO User's Guide
contain the necessary prerequisite information.

2.1.1 Argument Lists

You can determine the arguments required by a system service from the
service description in Chapter 4. The "Macro Format" for each system
service indicates the positional dependencies and keyword names of
each argument as shown in the following sample:

SSERVICE arga ,argb ,argc ,argd
This format indicates that the macro name of the service 1is $SERVICE
and that it requires four arguments, ordered as shown and with keyword

names ARGA, ARGB, ARGC, and ARGD. The argument list for this service
must have the format:

31 8 7 0

arga

argb

argc

argd

All arguments are longwords. The first 1longword in the 1list must
always contain, in its low-order byte, the number of arguments in the
remainder of the list. The remaining three bytes must be zeros.
2

Many arguments to system services are optional; these are indicated
in the macro formats by brackets. For example, if the second and
third arguments of $SERVICE are optional, tha macro format would
appear as:

SSERVICE arga ,[argb] ,[argc] ,argd

If you omit an optional argument 1in a system service macro
instruction, the macro supplies a default value for the argument.

There are two generic macro forms for coding calls to system services:

$name_G
$name_S

CALLING THE SYSTEM SERVICES
MACRO CODING

The form of the macro to use depends on how the argument list for the
system service is constructed:

1. The $name_G form requires you to construct an argument list
elsewhere in the program and specify the address of this list
as an argument to the system service. (A macro is provided
to create an argument 1list for each system service.) With
this form, you can use the same argument 1list, with
modifications if necessary, for more than one invocation of
the macro.

2. The $name_S form requires you to supply the arguments to the
system service in the macro instruction. The macro generates
code to push the argument list onto the call stack during
program execution. With this form, you can use registers to
contain or to point to arguments so you can write re-entrant

programs.
The $name_G macro form generates a CALLG instruction; the $name_S
macro form generates a CALLS instruction. The services are called
according to the standard procedure <calling conventions. System

services save all registers except RO and R1, and restore the saved
registers before returning control to the caller.

The following sections describe how to code system service calls using
each of these macro forms.

2.1.2 $name_G Form
The $name_G macro form requires a single operand:
$name_G label

label
address of the argument list.

You can use the $name macro to create the argument list. The format
of the $name macro is:

label: $name argl, ... ,argn

label
symbolic address of the generated argument 1list. This is the
label given as an argument in the $name_G macro form.

$name
the service macro name.

argl,...,argn
arguments to be placed in successive longwords in the argument
list.

2.1.2.1 specifying Arguments with the $name Macro - When you use the
$name macro to construct an argument list for a system service, you
can specify the arguments in any of three ways:

1. By using keywords to describe the arguments. A keyword must
be followed by an equal sign (=) and then by the value of the
argument, ‘

CALLING THE SYSTEM SERVICES
MACRO CODING

2. In positional order, with omitted arguments indicated by
commas in the argument positions. You can omit commas for
optional trailing arguments.

3. Using both positional dependence and keyword names (you must
list positional arguments first). '

For example, S$SERVICE may have the format:

SSERVICE arga ,[érgb] , [argc] ,argd
Assume, for the purposes of this example, that ARGA and ARGB are
arguments that require you to code numeric values and that ARGC and

ARGD require you to code addresses.

The two following examples show valid ways of coding a $name macro to
construct an argument list for a later call to $SERVICE.

lExample l: Using KeywordsJ

LIST? $SERVICE ARGER=0y ARGC=0y ARGA=1» ARGD=MYARGI

fE;ample 2: Specifying Arguments in Positional Order

LIST?: $SERVICE 1y yMYARGI
The argument list genefatéd in both cases is:

L.I8T¢ +LONG 4

«LONG 1
«LLONG 0
+ LONG 0

+LONG MYARGI

Note that all arguments, whether coded 1in positional order or by
keyword, must be expressions that the assembler can evaluate to
generate .LONG data directives.

2.1.2.2 Example of $name and $name_G Macro Calls - This example shows
how you can code a call to the Read Event Flags (SREADEF) system
service using an argument list created by $name.

As shown in Chapter 4, the macro format of the $READEF system service
is: :

SREADEF efn ,state

The EFN argument must specify the number of an event flag cluster, and
the STATE argument must supply the address of a longword to receive
the contents of the cluster.

These arguments might be specified wusing the S$name macro form as
follows:

READLST! $REANEF EFN=1ySTATE=TESTFLAG $ARGUMENT LIST FOR $READEF
This SREADEF macro generates the code:
READLST: + LLONG

2
+ LONG 1
«L.LONG T

FARGUMENT LLTST FOR $READNEF

ESTFLAG

S

CALLING THE SYSTEM SERVICES
MACRO CODING

To execute the S$READEF macro now requires only the line:
$READNEF .G REANLST

The macro generates the following code to call the Read Event Flags
system service:

CALLG READLSTR4SYS$REANFF

SYSSREADEF is the name of a vector to the entry point of the Read
Event Flags system service. The linker automatically resolves the
entry point addresses for all system services.

2.1.2.3 Symbolic Names for Argument List Offsets - The $name_G macro
form (used with the $name macro) is especially useful for:

° Coding calls to system services that have long argument lists

) Services that may be called repeatedly during the execution
of a single program, with the same, or essentially the same,
argument list

When you use this form, vyou can refer to arguments in the 1list
symbolically. Each argument in an argument list has an offset from
the beginning of the list; a symbolic name is defined for the numeric
offset of each argument. If you use the symbolic names to refer to
the arguments in a list, you do not have to remember the numeric
offset (which is based on the position of the argument shown in the
macro format). There are two additional advantages to referring to
arguments by their symbolic names:

1. Your code is more readable.

2. If an argument list for a system service changes with a later
release of a system, the symbols will not change.

The offset names for all system service argument lists are formed by
concatenating the service macro name with $_ and the keyword name of
the argument, as follows:

name$_keyword

where name is the macro name for the system service and keyword is the
keyword argument.

Similarly, the number of arguments required by a particular macro is
defined symbolically as:

name$_NARGS
Symbolic names for argument list offsets are defined automatically
whenever you use the $name form of the macro for a particular system

service.

For example, the SREADEF macro defines the following values:

Symbolic Name Value

READEF$_NARGS Number of arguments in the list (2)
READEF$_EFN Offset of EFN argument (4)
READEF$_STATE Offset of STATE argument (8)

CALLING THE SYSTEM SERVICES
MACRO CODING

Thus, the SREADEF macro can be coded to build an argument list for a
SREADEF system service call as follows:

READLST: SREANEF EFN=1eSTATE=TESTI1
Later, the program may want to use a different value for the STATE

argument in calling the service. The following lines show how this
can be accomplished.

MOVAL TEST2yREANLSTAHREADEF S STATE
$READEF .G READLST

The MOVAL instruction replaces the address TEST1 in the $READEF

argument 1list with the address TEST2; the $READEF_G macro calls the
system service with the modified list.

2.1.2.4 The $nameDEF Macro - You can also define symbolic names for
system service argument lists using the $nameDEF macro. This macro
does not generate any executable code; it merely defines the symbolic
names so they can be used later in the program. For example:

$QTONEF

This macro defines the symbol QIO$_NARGS and symbolic names for the
SQIO argument list offsets.

You may need to use the $nameDEF macro if you code an argument list to

a system service without using the $name macro form, or if a program
refers to an argument list in a separately assembled module.

2.1.3 The $name_S Form

The format of $name_S macro call is:
$name_S argl, ..., argn

The macro generates code to push the arguments on the stack in reverse

order. The actual instructions used to place the arguments on the

stack are determined as follows:

1. If the system service requires a value for an argument,
either a PUSHL instruction or a MOVZWL to -(SP) instruction
is generated.

2. If the system service requires an address for an argument, a
PUSHAB, PUSHAW, PUSHAL, or PUSHAQ instruction is generated,
depending on the context.

The -macro then generates a call to the system service in the format:

CALLS #n,@#SYSS$name

where n is the number of arguments on the stack.

“. ’,

CALLING THE SYSTEM SERVICES
MACRO CODING

2.1.3.1 sSpecifying Arguments with the $name_S Macro - When you use
the $name_S macro to construct an argument list for a system service,
you can specify arguments in any of three ways:

1. By using keywords to describe the arguments. All keywords
must be followed by an egual sign (=) and then by the value
of the argument.

2. In positional order, with omitted arguments indicated by
commas 1in the argument positions. You can omit commas for
optional trailing arguments.

3. By using both positional dependence and keyword names
(positional arguments must be listed first).

For example, S$SERVICE might have the format:

SSERVICE arga ,[argb] ,[argc] ,argd
Assume, for the purposes of this example, that ARGA and ARGB are
arguments that require you to code numeric values and that ARGC and

ARGD require you to code addresses.

The two following examples show valid ways of coding the $name_S macro
form to call SSERVICE.

Example 1l: Using Keywords

MYARGI?
+ BLKW 1

L3

.

$SERVICE.S ARGR=¥0sARGC=0y ARGA=%1 » ARGII=MYARGI

[Example 2: Specifying Arguments in Positional Orde;J

MYARGD?! L L.ONG 4

*

+

$SERVICE.S #1yysMYARGD

The argument list is pushed on the stack as follows:

FUSHAW MYARGD
FUSHI. #0
FUSHL. *0
FUSHL. ¥1

Note that all arguments, whether coded positionally or with keywords,
must be valid assembler expressions, since they are used as source
operands in instructions. Contrast this with the arguments for the
Sname argument 1list, which the assembler uses for data-generating
directives.

CALLING THE SYSTEM SERVICES
MACRO CODING

2.1.3.2 Example of $name_S Macro Call - Since a $name_S macro
constructs the argument list at execution time, addresses and values
can be supplied using register addressing modes. The SREADEF macro
used 1in the example of the $name_G form can be coded as follows using
the $name_S form:

SREANEF .S EFN=%1,8TATE=(R10)

where R10 contains the address of the longword to receive the status
of the flags.

This macro instruction is expanded as follows:

FUSHAL (R10)
FUSHL. ¥1
CAlLLS #2yPESYSHSREADNEF

2.1.4 Conventions for Coding Arguments to System Services

The arguments must be specified according to the macro assembler rules
for operand coding and addressing.

The way to specify a particular argument depends on:

® Whether the system service requires an address or a value as
the argument. In Chapter 4, the descriptions of the arguments
following a system service macro format always state whether
the argument is an address or a value.

e The form of the system service macro being wused. The
expansions of the $name-and $name_S macros in the examples in
the preceding sections. showed the code generated by each macro
form.

If you are in doubt as to whether you have coded a value or an address
argument correctly, you can assemble the program with the .LIST MEB
directive to check the macro expansion. See the VAX-11l MACRO Language
Reference Manual for more details.

Arguments that are optional to system services always have default
values, regardless of whether they are value or address arguments. In
almost every case, an optional argument defaults to 0.

When an argument is optional, the description of the argument always
describes what action the service takes when the default value is
used.

Address arguments may be optional when the system service returns
information; if the program does not require the information, you can
omit the optional argument.

CALLING THE SYSTEM SERVICES
MACRO CODING

2.1.4.1 Conventions for Coding Character String Arguments - Many
system services require ASCII text name strings as arguments or return
ASCII text name strings. Character strings are identified to system
services by specifying the address of a quadword character string
descriptor that has the format:

31 16 15 0

0 length

address

length
is a word specifying the length of the string (in bytes).

address
is a longword containing the address of the string.

When a service returns a character string, you must supply the address
of a quadword character string descriptor that describes the length
and address of an output buffer into which the string 1is to be
written. Optionally, you can supply the address of a word (16 bits)
to receive the actual length of the string returned.

Example of Coding a Character String Descriptor: The Translate
Logical Name (STRNLOG) system service uses character string
descriptors for both input and output: it accepts a logical name for
input and returns the equivalence name, if any, for the logical name.
The following example shows how these descriptors might be - coded to
translate the logical name CYGNUS.

CYGNUSDESC? FUESCRIFTOR FOR CYGNUS LOGICAL NAME
+1LONG 206-10% SLENGTH OF THE STRING
+L.ONG 10% FANDRESS OF THE STRING

1043 LASCTT /CYGNUS/ $THE STRING

2082

NAMEDESC FNESCRIFTOR FOR TRANSLATED OUTFUT
+LONG 40%-30% FLENGTH OF THE RUFFER ‘
+LONG 304 FANNRESS OF THE RUFFER

3042 « BLKR 63 §THE RBUFFER '

404

NAMELENGTH?
+BLKW 1 SRECETVE DUTFUT LENGTH HERE

+*

*

$TRNLOG.S LOGNAM=CYGNUSDESC » RELLEN=NAMELENGTH ¢~
RGLBUF =NAMEDESC

The input string for this service call 1is defined at the label
CYGNUSDESC. The output string that is returned from the service will
be written into the 63-byte buffer defined in the descriptor at the
label NAMEDESC. The actual 1length of ‘the returned string will be
written in the word at the label NAMELENGTH.

When an output buffer is provided for a character string, and the
string returned is 1longer than the buffer, the string returned is
truncated, and the service returns a status code indicating that fact.
(Status codes returned by system services are discussed in Section
2.1.5.)

CALLING THE SYSTEM SERVICES -~
MACRO CODING

A Macro to Create Character String Descriptors: Because many system
services use character string descriptors, you may want to write a
macro to create them. The following example shows such a macro:

+MACRD DESCRIFTOR TEXTs PLARELLy PLARELR
+LONG LARELZ-LAREL1
+LLONG LAREL1

LARELL? ASCIT /TEXT/

LARELZ:

+ENDM DESCRIFTOR

If this macro were used in the example above to create the character
string descriptor for the input name CYGNUS, it might be coded as
follows:

CYGNUSDESC?: DESCRIFTOR <CYGNUSH

Note that this macro, named DESCRIPTOR, is used 1in the examples in
Chapter 3 whenever a character string descriptor is required for
input.

2.1.4.2 Conventions for Coding Numeric Values - Many system services
accept numeric values for particular arguments. In some cases, the
services check only the low-order portion of the longword argument
they are passed. These cases are:

° Indicators. Indicators can only have values of 0 or 1.
System services check only the 1low-order bit of these
arguments.

° Event flag numbers. Event flag numbers can have values of 0
through 255. System services check only the low-order byte
of these arguments.

) Access modes. Access modes can have values of 0 through 3.
System services check only the 1low-order 2 bits of these
arguments.

When you code any of the above types of argument, the high-order
portion of the argument should be zeros.

Note that many system services use access modes to protect system
resources, and thus employ a special convention for interpreting
access mode arguments (keyword ACMODE). You can specify an access
mode using a numeric value or a symbolic name. The access modes,
their numeric values, and symbolic names are:

Access Numeric Symbolic
Mode Value Name
Kernel 0 PSLSC_KERNEL
Executive 1 PSLSC_EXEC
Supervisor 2 PSLSC_SUPER
User 3 PSLSC_USER

The symbolic names are defined in the S$SPSLDEF macro.

2-10

CALLING THE SYSTEM SERVICES
MACRO CODING

When you specify an access mode the actual mode wused is determined
after the service has compared the specified access mode with the
access mode from which the service was called. If the modes are
different, the less privileged access mode is always used. Because
this operation results in an access mode with a higher numeric value
(when the access mode of the caller is different from the specified
access mode), the access modes are said to be maximized.

Since much of the code you write will execute in user mode, you can
omit the access mode argument. The argument value defaults to 0, and
when this value is compared with the current execution mode, the mode
with the higher value, 3 for user mode, is used.

2.1.5 Status Codes Returned from System Services

When a system service finishes execution, a numeric status value Iis
always returned in general register RO. Successful completion is
indicated by a status code with the low-order bit set. The low-order
three bits, taken together, represent the severity of the error.
Severity code values are:

Value Meaning

Warning

Success

Error

Informational

Severe or fatal error
-7 Reserved

Uk wWNhHO

The remaining bits in the low-order word classify the particular
return condition. The high-order word indicates that a system service
issued this status code. '

Each numeric status code has a unique symbolic name in the format:
Ss$_code

where code is a mnemonic describing the return condition. For
example, a successful return is indicated by

SS$_NORMAL
An example of an error return status code is:
S5$_ACCVIO

This status code indicates that an access violation occurred because a
service could not read an input field or write an output field.

You can obtain the symbolic definitions for status codes at assembly
time by coding the system macro $SSDEF. Use the symbolic names for
system status codes to check return conditions, because the numeric
values for status codes may change with a later release of the system.

2.1.5.1 Information Provided by Status Codes - Status codes returned
by system services may provide information, that is, they do not
always Jjust indicate whether or not the service completed
successfully. SS$ NORMAL is the usual status code indicating success,
but others are defined. For example, the status code SS$_BUFFEROVF,

CALLING THE SYSTEM SERVICES
MACRO CODING

which is returned when a character string returned by a service is
longer than the buffer provided to receive 1it, is a success code.
This status code, however, gives the program additional information.

Warning returns, and some error returns, indicate that the service may
have performed some part, but not all, of the requested function.

The possible status codes that each service can return are described
with the individual service descriptions in Chapter 4. When you are
coding calls to system services, read the descriptions of the return
status codes to determine whether you want the program to check for
particular return conditions.

2.1.5.2 Testing Return Status Codes - To test for successful
completion following a system service call, the program can test the
low-order bit of RO and branch to an error checking routine if this
bit is not set, as follows: :

RL.RC ROserrlabel sERROR TF L.OW RBIT CLEAR

The error checking routine may check for specific values or for
specific severity levels. For example, the following instruction
checks for an illegal event flag number error condition:

CMFW #5684 TLLEFCyRO #1858 EVENT FLAG NUMRER TLLEGAL®?

Note that return status codes are always longword values; however,
since the high-order words of all status codes returned by system
services are always the same, you need only check the low-order word.

2.1.5.3 System Messages Generated by Status Codes - When you execute
a program with the DCL command RUN, the command interpreter uses the
contents of RO to issue a descriptive message if the program completes
with a nonsuccessful status.

The following example shows a simple error checking procedure:

SREADEF .S EFN=%64sSTATE=TEST
BRSEW ERROR

+

ERROR?: RLEC RO»10% $CHECK REGISTER ©
RSE FSUCCESSy RETLRN

10%2 RET FEXIT WITH RO STATUS

Following a system service call, the BSBW instruction calls the
subroutine ERROR. The subroutine checks the low-order bit in register
0 and if the bit is clear, branches to a RET instruction that causes
the program to exit with the status of RO preserved. Otherwise, the
subroutine issues an RSB to return to the main program.

If the event flag cluster requested in this call to SREADEF is not
currently available to the process, the program exits and the command
interpreter displays the message:

ZEYSTEM~F~UNASEFCy unassociated event flag cluster

The keyword UNASEFC in the message corresponds to the status code
SS$_UNASEFC.

CALLING THE SYSTEM SERVICES
MACRO CODING

2.1.5.4 Special Return Conditions - Two process execution modes
affect how control is returned to the calling program when an error
occurs during the execution of a system service. These modes are:

° Resource wait mode
) System service failure exception mode

If you change the default setting for either of these modes in a
program, the program must handle the special return conditions that
result. The next two sections discuss considerations for using these
modes.

Resource Wait Mode: Many system services require certain system
resources for execution. These resources include system dynamic
memory and process quotas for I/O operations. Normally, when a system
service is called and a required resource 1is not available, the
process is placed 1in a wait state until the resource becomes
available. Then, the service completes execution. This mode is
called resource wait mode.

However, in a time-critical environment, it may not be practical or
desirable for a program to wait: in these cases, you can choose to
disable resource wait mode, so +that when a required resource is
unavailable, control returns immediately to the calling program with
an error status .code. You can disable (and re-enable) resource wait
mode with the Set Resource Wait Mode (SSETRWM) system service.

How a program responds to the unavailability of a resource depends
very much on the application and the particular service that is being
called. 1In some instances, the program may be able to continue
execution and retry the service call later. 1In other instances, it
may be necessary only to note that the program is being required to
wait.

System Service Failure Exception Mode: When an error occurs during
the execution of a system service, control normally returns to the
next instruction in the calling program, which can check the return
status code in RO to determine the success or failure of the service
call.

To detect and respond to system service call failures, you can use the
condition handling mechanism of VAX/VMS to respond to system service
failures. Then, when an error occurs, a software exception condition
is generated, and control is passed to a condition handling routine.

This mode is called system service failure exception mode, and can be
enabled (and disabled) with the Set System Service Failure Exception
Mode (SSETSFM) system service. For example:

$GETSFM.LE ENBFLG=#1

This call enables the generation of exceptions when errors or severe
errors occur during execution of a system service (exceptions are not
generated for warning returns).

If you code a program to execute with this mode enabled, you can code
a condition handling routine. Information on condition handlers is
provided in Section 3.7, "Condition Handling Services." If no
user-specified routine is available when an exception occurs, and the
program was run with the DCL command RUN, the default condition
handler causes the program to exit and displays descriptive
information about the exception condition.

2-13

CALLING THE SYSTEM SERVICES

2.2 FORTRAN CODING

If you are a VAX-1l FORTRAN IV-PLUS programmer, you can code calls to
system services using either of two FORTRAN language constructs:

° A subroutine CALL statement
) A function reference

The method you choose depends on whether you want the program to check
the return status value following the completion of the system
service. If you use a function reference, you can have the program
check for specific values on return from the service to determine the
success or failure of the request.

The use of each of these methods is discussed in this section.

Knowledge of VAX-1l FORTRAN IV-PLUS rules for FORTRAN language coding
'is required for understanding the material presented in this section.
The VAX-11 FORTRAN IV-PLUS Language Reference Manual and the VAX-11
FORTRAN IV-PLUS User's Guide contain the necessary prerequisite
information.

2.2.1 The Format for Calling System Services

You can determine the arguments required by a system service from the
service description in Chapter 4. The "High Level Language Format" in
each system service description indicates the service name and the
positional dependencies of its arguments. For example:

SYSSSERVICE (arga ,argb ,argc ,argd ,arge)

This sample format indicates that the name of the service is $SERVICE,
and that its procedure name is SYSSSERVICE. SYSSSERVICE is the name
of a vector to the procedure that executes the service; the entry
point addresses for all system services are automatically resolved by
the linker.

The format also indicates that $SERVICE requires five arguments. You
must code the arguments in parentheses following the procedure name;
use commas to separate the arguments.

Many arguments to system services are optlonal these are indicated
in the format by brackets ([]). For example, if the third and fifth
arguments of $SERVICE are optional, the format would appear as:

SYS$SERVICE (arga ,argb ,[argc] ,argd ,[argel)

If you omit an optional argument, you must i ide a comma to indicate
the absence of the argument. For example, if the format of $SERVICE
is as shown above, and you choose to omit the optional arguments, you
could code either of the following:

CAalL 8YS4name(ardavarshe vardgdy) PSURROUTINE CALL
or

inteder.variahle=8YSsname (ardasarghssarddy) IFUNCTTON REFERENCE

Note that a comma is required to indicate the absence of each optional
trailing argument.

When you omit an optional argument, the compiler supplies a default
value of 0.

2-14

CALLING THE SYSTEM SERVICES
FORTRAN CODING

2.2.1.1 Example of a Subroutine CALL - The following example shows
how the Read Event Flags (SREADEF) system service might be called from
a FORTRAN program.

The format of the $SREADEF system service as shown in Chapter 4 is:

SYSSREADEF (efn ,state)

The EFN argument must specify the number of an event flag and the
STATE argument must supply the address of a variable to receive the
status of the flags in the cluster.

These arguments might be specified in a subroutine CALL statement as
follows:

INTEGERX4 TSTFLG I RECETVE STATUS FROM READEF

*

+

CALL SYS$SREADEF (ZVAL (1) » TETFLGY | CALL READ EVENT FLAGS

This statement requests that the status of the event flags 1in event
flag cluster 0 be returned in the variable TSTFLG.

The use of the %VAL built-in function, and the declaration of TSTFLG
as INTEGER*4 are programming considerations for coding arguments to
system services 1in a FORTRAN program. These considerations are
discussed in Section 2.2.2, "Conventions for Coding Arguments to
System Services".

2.2.1.2 Example of a Function Reference - When vyou use a function
reference, you can assign the return status value from the system
service to an INTEGER*4 variable. You musSt also declare the service
name as INTEGER*4 so the function value returned will be in the
&Trect format.

Using the same arguments of the SREADEF system service as shown in the
preceding example, a function reference might be coded as follows:

INTEGERX4 TSTFLGySYSSREANEF »TCONE | QUTFUT AND STATUS OF READEF

+

TCODE = SYS$SREADEF (ZVAL (1) s TSTFILLGY ! READ THE FLAGS

Again, the variable TSTFLG is declared to receive the status of flags
in the cluster. The system service function SYSSREADEF is declared as
an INTEGER*4 function (external reference).

For additional examples of function references, see Section 2.2.3,
"Status Codes Returned from System Services."

CALLING THE SYSTEM SERVICES
FORTRAN CODING

2.2.2 Conventions for Coding Arguments to System Services

Arguments that are expressed as variables or constants must be
declared or specified according to the VAX-11 FORTRAN IV-PLUS syntax
rules.

The way to specify a particular argument depends on:

) Whether the service requires an address or a value as the
argument

. The data type of the argument (if the service requires the
address of the argument)

The descriptions of the arguments following the system service format
always state whether an address is required. If the description does
not say "address," you must provide a value.

The argument descriptions contain terms that may not be familiar to
you as a FORTRAN programmer. Table 2-1 lists the terms that are used
in Chapter 4 to describe arguments and illustrates how these arguments
can be coded in a FORTRAN program.

The following sections provide additional details on value and address
arguments.

N .

CALLING THE SYSTEM SERVICES

FORTRAN CODING

Table 2-1

FORTRAN Arguments for System Services

Valid Specifications and Declarations (Examples)

Argument
Type Constant Variable Expression
byte SYS$name ($VAL(10)) BYTE ABC BYTE ABC
value - or - - or -
LOGICAL*1 ABC LOGICAL*1 ABC
SYS$name ($VAL (ABC)) SYS$name (3VAL (ABC+10))
byte SYS$name(10) BYTE ABC SYS$name (ABC+10)
address - or - - or -
LOGICAL*1 ABC LOGICAL*1 ABC
SYS$name (ABC) SYS$name (ABC+10)
word SYS$name ($VAL(1234)) INTEGER*2 DEF INTEGER*2 DEF
value - or - - or -
LOGICAL*2 DEF LOGICAL*2 DEF
SYS$name ($VAL (DEF)) SYS$name ($VAL (DEF+1234))
word SYS$name (1234) INTEGER*2 DEF INTEGER*2 DEF
address - or - - or -
LOGICAL*2 DEF LOGICAL*2 DEF
SYS$name (DEF) SYS$name (DEF+1234)
longword SYS$name ($VAL(1234)) INTEGER*4 GHI INTEGER*4 GHI
value - or - - or -
LOGICAL*4 GHI LOGICAL*4 GHI
SYS$name ($VAL (GHI)) SYS$name ($VAL (GHI+1234))
longword SYS$name (40000) INTEGER*4 GHI INTEGER*4 GHI
address - or - - or -
LOGICAL*4 GHI LOGICAL*4 GHI
SYS$name (GHI) SYS$name (GHI+40000)
quadword

(64-bit value)
2-longword array

INTEGER*4 JKL(2)

SYS$name (JKL)

character string
descriptor

SYSSname ('ALPHA"')

CHARACTER*15 NAME

SYS$name (NAME)

CHARACTER*15 NAME

SYéSname(NAME//'.DAT')

entry mask or

EXTERNAL PROGA

routine —— ———
SYS$name (PROGA)
SUBROUTINE PROGA
Note: For input arguments, you can use constants, variables, or expressions.

For output arguments, you must use variables.

CALLING THE SYSTEM SERVICES
FORTRAN CODING

2.2.2.1 Value Arguments - All value arguments must be indicated by
enclosing the value expression within the built-in function %VAL, in
the format:

$VAL (value_expression)

Values can be expressed as constants, variables, or expressions, as in
the following examples:

Argument Meaning

$VAL (1234) Constant value

INTEGER*4 ABC Declare variable

$VAL (ABC) Use current value of variable

$VAL (ABC+1234) Use current value of variable plus constant

Some arguments are designated in the service descriptions as:
° Indicators
e Access modes

Indicators are arguments that can have only one of two values, 0 or 1.
You can specify these arguments as byte, word, or longword values;
however, system services check only the low-order bit of the argument.

Access modes are used by the operating system to provide memory
protection; they can have the following values:

Access
Mode Value

Kernel
Executive
Supervisor
User

wWNhoHCo

The values can be specified as byte, word, or longword values;
however, system services check only the low-order 2 bits of these
arguments. You can omit the access mode argument when you <code a
system service call. For more details on how system services
interpret this argument, see Section 2.1.4.2, "Conventions for Coding
Numeric Values."

2.2.2.2 Address Arguments - System services may require addresses to
refer to either input wvalues or output variables. When you code
address arguments, you must consider how the argument is wused (for
input or output) and the data type (that is, the length of the
argument) that is required. Table 2-1 summarizes the data types that
system services can require and gives examples of valid coding.

2.2.2.3 Input Address Arguments - For input address arguments that
refer to byte, word, or longword values, you can supply either
constant values, variable names, or expressions in the system service
call.

S

CALLING THE SYSTEM SERVICES
FORTRAN CODING

In all cases, if you supply a variable name for the argument, the
variable data type must be equal to or larger than the data type
required, as follows:

e If a byte is reqﬁired, use BYTE, INTEGER*2, or INTEGER*4
e If a word is required, use INTEGER*2 or INTEGER*4
e If a longword is required, use INTEGER*4

If the address refers to a quadword (64-bit) or 2-longword array, you
must declare a properly dimensioned array.

When a service requires the "address of an entry mask," or the
"address of a routine," you must declare an external procedure. For
example:

EXTERNAL FROGA

This statement defines the procedure PROGA for an input argument to a
system service. :

2.2.2.4 Output Address Arguments - For output address arguments, ydu
must declare a variable to receive the value returned, so that storage
is allocated for the output.

When a value is returned, you must declare a variable of the required
length to receive the value. For example, the Get Time (SGETTIM)
system service returns a quadword binary time value. You can code a
call to this service as follows:

INTEGERX4 SYSTIM(2)

+

*

CALL SYS$GETTIM(SYSTIM)

2.2.2.5 Conventions for Coding Character String Arguments - Many
system services require ASCII text name strings as input arguments or
return ASCII strings. For these arguments, the description of the
argument in Chapter 4 refers to a "character string descriptor."

When a system service requires the address of a character string
descriptor for an input argument, you can code either a character
constant in the system service call or you can provide the name of a
variable that has been declared as CHARACTER. The VAX-11l FORTRAN
IV-PLUS compiler automatically generates the character string
descriptor required for the argument.

When a system service requires the address of a character string
descriptor to return a character string, you must provide the name of
a variable that has been declared as CHARACTER to receive the string.
Optionally, you <can .supply the name of an INTEGER*2 variable to
receive the length of the string returned.

CALLING THE SYSTEM SERVICES
FORTRAN CODING

Example of Coding Character String Arguments: The Translate Loégical
Name (STRNLOG) system service requires the addresses of character
string descriptors for both input and output arguments: it accepts a
logical name for input and returns the equivalence name, if any, of
the logical name. These arguments might be coded as follows to
translate the logical name CYGNUS.

CHARACTERX63 CYGNAM TRUFFER DESCRIFTOR FOR TRANSLATE
INTEGERX2 CYGLEN - PGET LENGTH HERE

CALL SYSSTRNLOGC CYGNUS » CYGLENCYGNAMy v v) I TRANSLATE CYGNUS

In the above example, the input logical name, CYGNUS, is coded as a
character constant in the system service call. When the S$TRNLOG
system service completes, it places the equivalence name string in the
character variable CYGNAM, and places the 1length (the number of
characters in the equivalence name string) in the variable CYGLEN.

2.2.2.6 Default Values for Optional Arguments - Arguments that are
optional to system services always default to 0, regardless of whether
they are value or address arguments.

When an argument is optional, its description always indicates what
action the service takes when the default value is used. Address
arguments are often optional when the system service returns
information; if the program does not require the 1nformat10n, you can
omit the optional argument.

Remember that you must always indicate the absence of an optional
argument by entering a comma.)

2.2.3 Status Codes Returned from System Services

When you code a system service call using a function call statement, a
status code from the system service 1is returned as an INTEGER*4
function value. The 1low-order bit of this longword indicates
successful or nonsuccessful completion of the service. :

The low-order three bits, taken together, represent the severity of
the error. Severity code values are:

Value Severity Level

Warning

Success

Error

Informational

Severe, or fatal, Error
-7 . Reserved

U WNHFO

-The remaining bits classify the particular return condition, and the
‘operating system component that issued the status code.

p—

CALLING THE SYSTEM SERVICES
FORTRAN CODING

Each numeric status code has a symbolic name.in the format:
SS$_codeA

where code 1is a mnemonic describing the return condition. For
example, a successful return is indicated by:

SS$_NORMAL
An example of an error status code is:
SS$_ACCVIO

This status code indicates that a service could not read an input
argument or write an output argument.

2.2.3.1 Information Provided by Status Codes - Status codes returned
by system services may provide information;. that is, they do not
always Jjust indicate whether or not the service completed
successfully. SS$_NORMAL is the usual status code indicating success,
but others are defined. For example, the status code SS$_BUFFEROVF,
which is returned when a character string returned by a service is
longer than the buffer provided to receive it, is a successful code.
This status code, however, gives the program more information than
that provided by SS$_NORMAL.

Warning returns, and some error returns, indicate that the service may
have performed some part, but not all, of the requested function.

The possible status codes that each service can return are described
with the individual service descriptions in Chapter 4. When you are
coding calls to system services, read the descriptions of the return
status codes to determine whether you want the program to check for
particular return conditions. ,

2.2.3.2 Testing Return Status Codes - When you code a call to a
system service using a function reference, you can follow the service
call with a logical test on the function value defined for the service
call, where TRUE indicates successful completion. For example, a
SREADEF statement may be coded:

INTEGERX4 SYSHREANEF s TETFLGo T L T0 TEST READEF SUCCESS
I = SYSSREADEF (ZVAL (1) » TSTFLG) PoCall. READEF AS FUNCTION
IF (.NOT. 1) GOTO 90000 I ERROR TIF FALSE

In the above example, the variable I is tested following the «call to
the SREADEF system service. If a nonsuccessful status code is
returned, the program branches; otherwise, it continues execution.

These statements may also be combined, for example:

INTEGERX4 SYS$READEFTSTFLG T TEST REANEF SUCCESS

*

IF (.NOT. SYS$REATEF (ZVAL (1) s TSTFLG)) GOTD 90000
I FRROR TF READEF FAILS

o™ 4 @ TT
- PR e H
{\'}r‘; llz '*“\"{i g‘“&; ..-/2;'/ ‘{4(}6 & ~f £ - F/}C!T

2-21 (W, Wml‘%c/, >

36

CALLING THE SYSTEM SERVICES
FORTRAN CODING

You can also code calls to services that check for particular errors
following the function reference; or, you may want to provide a GOTO
statement (as in the above examples) to branch to a procedure that
checks for specific errors.

The following example illustrates a program checking for a particular
error return from the SREADEF system service:

INTEGERX4 SYS$REANEF » TSTFL.Gy TCONE

*

.

TCONE = SYSSREADEF (XVAL(2)»TSTFLG)
IF (ICONE +EQ. 5.TLLEFC) GOTO 20000

The symbolic definitions for system status codes are maintained in the
default system library, STARLET.MLB. If your program is going to test
for these specific return values, you must create an INCLUDE file to
define the symbol names as parameters.

Use these symbolic names whenever you code tests for return status
values, since the numeric values may change with a later release of
the system.

Appendix A "System Symbolic Definition Macros" describes how to obtain
the numeric values for system symbols. For more information on
INCLUDE files containing system symbols, see the VAX-11 FORTRAN
IV-PLUS User's Guide.

2.2.3.3 Special Return Conditions - Two process execution modes
affect how. control is returned to the calling program when an error
occurs during the execution of a system service. These modes are:

° Resource wait mode
) System service failure exception mode

If you choose to change the default setting for either of these modes,
your program must handle the special return conditions that result.

Resource Wait Mode: Many system services require certain system
resources for execution. These resources include system dynamic
memory and process quotas for I/O operations. Normally, when a system
service is called and a required resource 1is not available, the
program is placed in a wait state until the resource becomes
available. Then, the service completes execution. This mode is
called resource wait mode.

However, in a time-critical environment, it may not be practical or
desirable for a program to wait: 1in these cases, you can choose to
disable.resource wait mode, so that when such a condition occurs,
control returns immediately to the calling program with an error
status code. You can disable (and re-enable) resource wait mode with
the Set Resource Wait Mode ($SSETRWM) system service.

ty

RN

CALLING THE SYSTEM SERVICES
FORTRAN CODING

How a program responds to the unavailability of a resource depends
very much on the application and the particular service that is being
called. 1In some instances, the program may be able to continue
execution and retry the service call later. 1In other instances, it
may be necessary only to note that the program is being required to
wait.

System Service Failure Exception Mode: System service failure
exception mode determines whether control is returned to the caller in
the normal manner following an error in a system service call, or
whether an exception condition is generated. System service failure
exception mode is disabled by default; the calling program receives
control following an error. It is recommended that FORTRAN programs
do not enable system service failure exception mode.)

CHAPTER 3

HOW TO USE SYSTEM SERVICES

This chapter presents background and usage information on:

Event flag services

AST (Asynchronous System Trap) services
Logical name services

Input/output services

Process control services

Timer and time conversion services
Condition handling services

Memory management services

Whenever possible, coding examples (using VAX-11l MACRO) are given to
familiarize you with the system services and their arguments. The
examples do not show complete programming sequences; rather, they
show only the code and/or arguments that are pertinent to a particular
discussion.

In some of the more complex examples, explanatory text is keyed to the
example using a special numeric symbol, for example).

The examples are coded using VAX-11 MACRO. If you are a FORTRAN
programmer, see Figure 3-1 for an explanation of how to interpret the
MACRO examples.

Notes:

HOW TO USE SYSTEM SERVICES

In the MACRO example, a routine name and entry mask show the
beginning of executable code in a routine or subroutine; in
FORTRAN, the routine and its entry mask are defined by the
SUBROUTINE statement.

The MACRO examples define input character string arguments

with a DESCRIPTOR macro. This is not necessary in FORTRAN;
you can code an input character string directly in the system
service call.

These three MACRO directives declare a 63-byte buffer for an
output character string. In FORTRAN, the CHARACTER*63
declaration is all that is necessary.

The MACRO directive .BLKW reserves a word for an output
value. This is equivalent to the FORTRAN INTEGER*2
declaration.

A MACRO programmer calls a system service by a macro name,
which does not have the "SYS" portion of the procedure name.
A macro name for a system service call has an _S or _G
suffix. Note the following differences between MACRO and
FORTRAN in the manner of coding arguments:

a. MACRO arguments are not placed in parentheses.

b. MACRO arguments in the. examples are specified with a
keyword name preceding the actual argument. These names
correspond to the names of the arguments shown in
lowercase in the system service formats in Chapter 4.
FORTRAN arguments must be coded in the positional order
shown in Chapter 4.

c. No indication is given when an optional argument is
omitted in a MACRO argument list that uses keywords; you
must code a comma when you omit an optional argument in
FORTRAN.

d. The MACRO programmer uses a number sign character (#) to
indicate a 1literal value for an argument. This is
equivalent to the %VAL function in FORTRAN.

The MACRO examples show a check for an error return from a
system service with the BSBW instruction; this is equivalent
to a FALSE logical test following a function reference in
FORTRAN.

Figure 3-1 FORTRAN Interpretation of MACRO Examples

HOW TO USE SYSTEM SERVICES

IMACRO Examplel

: CYBDES: DESCRIFTOR <CYGNUSH SIESCRIFTOR FOR CYGNUS STRING
) NAMDES: JLONG 20%-10% SUESCRIFTOR FOR OUTFPUT BUFFER
+LONG 10%@ ‘
10%3 +BLKE 63 SOUTFUT BUFFER (63 RBYTES)
20% 3
NAMLEN: ELKW 1@ SWORD TO RECEIVE LENGTH
orION: :@
JWORD O JENTRY MASK FOR START OF ROUTINE
@+ TRNLOG..S LOGNAM=CYGIES s RSLLEN=NAMLEN y RSLEUF =NAMIIES y -
TARLE=#1 s TRANSLATE FROM GROUF TAELE
©Oxrsru ERROR $CHECK FOR ERROR
END

)

IFORTRAN Equivalentl

SURROUTINE ORION@) IFROCEDURE ORION
CHARACTER*63 NAMDES @) IOUTFUT BUFFER DESCRIFTOR
INTEGER*2 NAMLEN@) IWORD! TO RECEIVE LENGTH
INTEGERX4 SYS$TRNLOG IIEFINE SYSTEM SERVICE FUNCTION
©:ConE = SYSHTRNLOGC CYGNUS’ y NAMLEN, NAMIES» ZUAL (1) 5)
@F (.NOT. ICODE) GOTO 90000 IERANCH IF ERROR
ENIDI
) Figure 3-1 (Cont.) FORTRAN Interpretation of MACRO Examples

HOW TO USE SYSTEM SERVICES

3.1 EVENT FLAG SERVICES

Event flags are status posting bits maintained by VAX/VMS for general
programming use. Some system services set an event flag to indicate
the completion or the occurrence of an event: the calling program can
test the flag. For example, the Queue I/0 Request ($QIO) system
service sets an event flag when the requested input or output
operation completes.

Programs can use event flags to perform a variety of signaling
functions:

° Setting or clearing specific flags
° Testing the current status of flags

° Placing the current process in a wait state pending the
setting of a specific flag or a group of flags

Moreover, event flags can be used in common by more than one process,
as 1long as the cooperating processes are in the same group. Thus, if
you have developed an application that requires the concurrent
execution of several processes, you can use event flags to establish
communication among them and to synchronize their activity.

3.1.1 Event Flag Numbers and Event Flag Clusters

Each event flag has a unique decimal number; event flag arguments in
system service calls refer to these numbers. For example, if you
specify event flag 1 when you code a $QIO system service, then event
flag number 1 is set when the I/O operation completes.

To allow manipulation of groups of event flags, the flags are ordered
in clusters, with 32 flags in each cluster, numbered from right to
left, corresponding to bits 0 through 31 in a longword. The clusters
are also numbered. The range of event flag numbers encompasses the
flags in all clusters: event flag 0 is the first flag in cluster 0,
event flag 32 is the first flag in cluster 1, and so on.

There are two types of cluster:

1. A local event flag cluster can only be used internally by a
single process. Local clusters are automatically available
to each process.

2. A common event flag cluster can be shared by cooperating
processes in the same group. Before a process can refer to a
common event flag cluster, it must explicitly "associate"
with the cluster. Association is described in Section 3.1.4,
"Common Event Flag Clusters."

The ranges of event flag numbers and the clusters to which they belong
are summarized in Table 3-1.

3.1.1.1 Specifying Event Flag and Event Flag Cluster Numbers - The
same system services manipulate flags in both local and common event
flag clusters. Since the event flag number implies the cluster
number, you do not have to specify the cluster number when you code a
system service call that refers to an event flag.

3-4

HOW TO USE SYSTEM SERVICES
EVENT FLAG SERVICES

Table 3-1
Summary of Event Flag and Cluster Numbers

Cluster |Event

Number |Flag Numbers Description Restriction
0 0-31 Process-local event Event flags 24
1 32-63 flag clusters for through 31 are
general use reserved for

system use

2 64-95 Assignable common Must be associated
3 96-127 event flag cluster before use

When a system service requires an event flag cluster number as an
argument, you need only specify the number of any event flag that is
in the cluster. Thus, to read the event flags in cluster 1, you could
specify any number in the range 32 through 63.

3.1.2 Examples of Event Flag Services

Local event flags are most commonly used with other system services.
For example, with the Set Timer (S$SSETIMR) system service you can
request that an event flag be set at a specific time of day, or after
a specific interval of time has passed. If you want to place a
process in a wait state for a specified period of time, you could code
an event flag number for the $SETIMR service, and then use the Wait
for Single Event Flag (SWAITFR) system service, as follows:

TIME? +BLKQ 1 sWILL CONTAIN TIME INTERVAL TO WAIT

+
*

$HETIMR.S EFN=#33,DAYTIM=TIME $8ET THE TIMER
SWAITFR..S EFN=$33 FWAIT UNTIL TIMER EXFIRES

In this example, the DAYTIM argument refers to a time value. Details
on how to obtain a time value in the proper format for input to this
service are contained in Section 3.6, "Timer and Time Conversion
Services,"

3.1.2.1 Event Flag Waits - Three system services place the process in
a walt state pending the setting of an event flag:

° The Wait for Single Event Flag (SWAITFR) system service
places the process in a wait state until a single flag has
been set.

° The Wait for Logical OR of Event Flags (SWFLOR) system
" service places the process in a wait state until any one of a
specified group of event flags has been set.

° The Wait for Logical AND of Event Flags (SWFLAND) places the
process 1in a wait state until all of a specified group of
flags have been set.

HOW TO USE SYSTEM SERVICES
EVENT FLAG SERVICES

Another system service that accepts an event flag number as an
argument is the Queue I/O Request ($QIO) system service. Figure 3-2
shows a program that issues two $QIO system service calls, and uses
the SWFLAND system service to wait until both I/O operations complete
before it continues execution. .

$QI0..8 EFN=%1s... FIGSUE FIRST QUEUE I/0 REQUEST
‘.BSBU ERROR $CHECK FOR ERROR
$QI0..8 EFN=%2v... $ ISSUE SECOND I/0 REQUEST
ESEW ERROR §CHECK FOR ERROR
€’$NFLAND-S EFN=%1yMASK=#"R0110 SWAIT UNTIL BROTH COMFLETE
ESEW ERROR $ CHECK FOR ERROR
. FCONTINUE EXECUTION

+

Notes:

The event flag argument is specified in each $QIO regquest.
Both of these event flags are in cluster 0.

e’ After both I/0 requests are successfully queued, the program
calls the Wait for Logical AND of Event Flags (SWFLAND)
system service to wait until the 1I/0 operations are
completed. In this service call, the EFN argument-
corresponds to a cluster number: the cluster that contains
event flag 1, that 1is, <cluster 0. The MASK argument
specifies which flags in the cluster are to be waited for:
flags 1 and 2.

Figure 3-2 Using Local Event Flags

3.1.3 Setting and Clearing Event Flags

The $SETIMR and $QIO system services clear the event flag specified in
the system service call before they queue the timer or I/O request.
This ensures the integrity of the event flag with respect to the
process. If you are using event flags in local clusters for other
purposes, take care to verify the state of a flag before you use it.

The Set Event Flag (SSETEF) and Clear Event Flag (SCLREF) system
services set and clear specific event flags. For example, the
following system service call clears event flag 32:

$CILREF..S EFN=%32

The S$SETEF and SCLREF services return successful status codes that
indicate whether the flag specified was set or clear when the service
was called. The caller can thus verify the previous state of the
flag, if necessary. The codes returned are SS$_WASSET and SS$_WASCLR.

Event flags in common event flag clusters are all initially clear when

the cluster 1is created. The next section describes the creation of
common event flag clusters.

N

SN

HOW TO USE SYSTEM SERVICES
EVENT FLAG SERVICES

3.1.4 Common Event Flag Clusters

Before any processes can use event flags in a common event flag
cluster, the cluster must be created: the Associate Common Event Flag
Cluster (SASCEFC) system service creates a common event flag cluster.
Once a cluster has been created, other processes in the same group can
call S$ASCEFC to establish their association with the cluster, so they
can access flags in it. :

When a common event flag cluster is created, it must be identified by
a 1- to l5-character name string. All processes that associate with
the cluster must use the same name to refer to the cluster; the
$ASCEFC system service establishes the correspondence between the
cluster name and the cluster number that a process assigns to it.

The following example shows how a process might create a common event
flag cluster named COMMON CLUSTER and assign it a cluster number of 2:

CLUSTER?)
DESCRIFTOR < COMMON CLUSTER:> F CLUSTER NAME

$ASCEFC.S EFN=#6%5)yNAME=CLUSTER §CREATE CLUSTER 2

Subsequently, other processes in the same group may associate with
this cluster. Those processes must use the same character string name
to refer to the cluster; but the cluster numbers they assign do not
have to be the same.

Common event flag clusters are either temporary or permanent. The
PERM argument to the SASCEFC system service defines whether the
cluster is temporary or permanent.

Temporary clusters:

® Require an element of the creating process's quota for timer
queue entries (TQELM quota).

) Are deleted when all processes associated with the cluster
have disassociated. Disassociation can be performed
explicitly, with the Disassociate Common Event Flag Cluster
(3DACEFC) system service, or implicitly, when the image
exits.

Permanent clusters:

° Require the creating process to have the PRMCEB user
privilege.

° Continue to exist until they are explicitly marked for
deletion with the Delete Common Event Flag Cluster (SDLCEFC)
system service.

If cooperating processes that are going to use a common event flag
cluster all have the requisite privilege or gquota to create a cluster,
the first process to call the $ASCEFC system service creates the
cluster. '

HOW TO USE SYSTEM SERVICES
EVENT FLAG SERVICES

3.1.5 Disassociating and Deleting Common Event Flag Clusters

When a process no longer needs access to a common event flag cluster,
it issues the Disassociate Common Event Flag Cluster (S$SDACEFC) system
service. When all processes associated with a temporary cluster have
issued a $DACEFC system service, the system deletes the cluster. If a
process does not explicitly disassociate itself from a cluster, the
system performs an implicit disassociation when the image that called
SASCEFC exits.

Permanent clusters, however, must be explicitly marked for deletion
with the Delete Common Event Flag Cluster ($SDLCEFC) system service.
After the cluster has been marked for deletion, it 1is not deleted
until all processes associated with it have been disassociated.

3.1.6 Example of Using a Common Event Flag Cluster

Figure 3-3 shows an example of four cooperating processes that share a
common event flag cluster. The processes named ORION, CYGNUS, LYRA,
and PEGASUS are in the same group.

Notes on Figure 3-3:

‘. Assume for this example that ORION is the first process to
issue the S$SASCEFC system service, and therefore 1is the
creator of the cluster. Since this 1is a newly created
cluster, all event flags in it are 0.

e’ The argument NAME in the S$SASCEFC system service call is a
pointer to the descriptor CNAME for the name to be assigned
to the cluster: 1in this example, the cluster is named COMMON
CLUSTER. This service call associates the name COMMON
CLUSTER with cluster 2, containing event flags 64 through 95.
Cooperating processes CYGNUS, LYRA, and PEGASUS must use the
same character string name to refer to this cluster.

G’ The continuation of process ORION depends on work done by
processes CYGNUS, LYRA, and PEGASUS. The Wait For Logical
AND of Event Flags ($WFLAND) system service call specifies a
mask indicating the event flags that must be set before
Process ORION can continue. The mask in this example, "XE is
the hexadecimal equivalent of binary 1110: it indicates that
the second, third, and fourth flags in the cluster must be
set.

Process CYGNUS executes, associates with the cluster, sets
event flag 65, and disassociates.

G’ Process LYRA associates with the cluster, . but instead of
referring to it as cluster 2, it refers to it as cluster 3
(with event flags in the range 96 through 127). Thus, when
process LYRA sets flag 99, it is setting the fourth bit in
COMMON CLUSTER.

@ Process PEGASUS associates with the cluster, waits for an
event flag set by process LYRA, and sets an event flag
itself.

" When all three event flags are set, Process ORION continues
execution ‘and calls the $DACEFC system service. Since ORION
did not specify the PERM argument when it created the
cluster, COMMON CLUSTER is deleted.

3-8

g

HOW TO USE SYSTEM SERVICES
EVENT FLAG SERVICES

‘lProcess ORIONJ

CNAME: DESCRIFTOR <COMMON CLUSTER> $CLUSTER NAME

*

"$ASCEFCMS EFN=%#64s NOME=CNAME $ CREATE COMMON CLUSTER
BSEW ERROR $CHECK FOR ERROR

*

€,$NFLANDm8 EFN=#64 s MAGK=%"XE $WAIT FOR FLAGS 12,3
RSEW ERROR $CHECK FOR ERROR
¢'$HACEFC*S EFN=%64 sDISASSOCIATE CLUSTER

fProcess CYGNU§J

ORION_FLAGS: DNESCRIFTOR <COMMON CLUSTER> $CLUSTER NAME

®

$ASCEFC.S EFN=%44yNAME=0RION.FLAGS

REBW ERROR , $CHECK FOR ERROR
$SETEF .8 EFN=%635 FSET EVENT FLAG 1
RSEW ERROR $CHECK FOR ERROR
$DACEFC..S EFN=%64 sDISASSOCIATE

[Process LYRA |

SHARE?! DESCRIFTOR <COMMON CLUSTERX §CLUSTER NAME

*

‘B$ASCEFCMS EFN=#96 s NAME=SHARE $ASSOCIATE WITH CLUSTER 3

RSEW ERROR $CHECK FOR ERROR
$SETEF .8 EFN=%$99 $SET FLAG 3

RSEW ERROR $CHECK FOR ERROR
$DACEFC.S EFN=#96 sDISASSOCIATE

Process PEGASUS

CLUSTER?! DESCRIFTOR «COMMON CLUSTER> $CLUSTER NAME

+

$ASCEFC..S EFN=%64y NAME=CLUSTER ASSOCIATE WITH CLUSTER

RGRW ERROR $CHECK FOR ERROR

$WALTFR.E EFN=4#&3 sWAIT FOR FLAG 1

RSRW ERROR jCHECK FOR ERROR
. §CONTINUE

S$BETEF .S EFN=4#66 JSET FLAG 2

RERW ERROR ' $CHECK FOR ERROR

$TACEFC.S EFN=4#44 sNISASSOCIATE

Figure 3-3 Example of a Common Event Flag Cluster

HOW TO USE SYSTEM SERVICES

3.2 AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

Some system services allow a process to request that it be interrupted
when a particular event occurs. Since the interrupt occurs
asynchronously (out of sequence) with respect to the process's
execution, the interrupt mechanism is called an asynchronous system
trap (AST). The trap provides a transfer of control to a
user—-specified routine that handles the event.

The system services that use the AST mechanism accept as an argument
the address of an AST service routine, that is, a routine to be given
control when the event occurs.

These services are:
® Queue I1I/0 Reguest ($SQIO0)
° Set Timer (SSETIMR)
° Set Power Recovery AST (SSETPRA)
° Update Section File on Disk (SUPDSEC)

For example, if you code a Set Timer (SSETIMR) system service, you can
specify the address of a routine to be executed when a time interval
expires, or at a particular time of day. The service sets the timer
and returns; the program image continues executing. When the
requested timer event occurs, the system "delivers" an AST by
intefrupting the process and calling the specified routine.

The following sections describe in more detail how ASTs work and how
to use thenm.

3.2.1 Example of an AST

Figure 3-4 shows a typical program that calls the $SETIMR = system
service with a request for an AST when a timer event occurs.

Notes on Figure 3-4:

@ The call to the $SETIMR system service requests an AST at
12:00 noon.

The DAYTIM argument refers to the quadword NOON, which must
contain the time in system time format. For details on how
this is done, see Section 3.6, "Timer and Time Conversion
Services." The ASTADR argument refers to TIMEAST, the address
of the AST service routine.

When the call to the system service completes, the process
continues execution.

@’ The timer expires at 12:00 and notifies the system. The
system interrupts execution of the process and gives control
to the AST service routine.

G’ The user routine TIMEAST handles the interrupt. When the AST
routine completes, it issues a RET instruction to return
control to the program. The program resumes execution at the
point at which it was interrupted.

-

HOW TO USE SYSTEM SERVICES
AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

NOON? +RBLKQ 1 sWILL CONTAIN 12:00 SYSTEM TIME
I.IBRA! WORD 0 FENTRY MASK FOR LIERA

+*

‘.$8ETIMH_S DAYTIM=NOONs ASTADR=TIMEAST $SET TIMER
BSERW ERROR s CHECK FOR ERROR

. - Timer o

. Interrupt
TIMEAST?
+WORD 0 FENTRY MASK FOR AST ROUTINE
e’ . FHANDLE TIMER REQUEST
RET § DONE
+END L.IERRA

Figure 3-4 Example of an AST

3.2.2 Access Modes for AST Execution

Each request for an AST is qualified by the access mode from which the
AST 1is requested. Thus, if an image executing in user mode requests
notification of an event by means of an AST, the AST service routine
executes in user mode.

Since the ASTs you use will almost always execute in user mode, you do
not need to be concerned with access modes. However, you should be
aware of some system considerations for AST delivery. These
considerations are described in Section 3.2.6, "AST Delivery."

3.2.3 ASTs and Process Wait States

A process that is in a wait state can be interrupted for the delivery
of an AST and the execution of an AST service routine. When the AST
service routine completes execution, the process is returned to the
wait state, if the condition that caused the wait is still in effect.

The following wait states may be interrupted:
° Event flag waits
° Hibernation

° Resource waits and page faults

3.2.3.1 Event Flag Waits - If a process is waiting for an event flag
and 1is interrupted by an AST, the wait state is restored following
execution of the AST service routine. 1If the flag is set during the
execution of the AST service routine (for example, by completion of an
I/0 operation) then the process continues execution when the AST
service routine completes.

Event flags are described in detail in Section 3.1, "Event Flag
Services."

HOW TO USE SYSTEM SERVICES
AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

3.2.3.2 Hibernation - A process can place itself in a wait state with
the Hibernate ($SHIBER) system service. This wait state can be
interrupted for the delivery of an AST. When the AST service routine
completes execution, the process continues hibernation. The process
can, however, "wake" itself in the AST service routine or be awakened
by another process or as the result of a timer scheduled wakeup
request. Then, it continues execution when the AST service routine
completes.

Process suspension is another form of wait; however, a suspended
process cannot be interrupted by an AST. Process hibernation and
suspension are described in Section 3.5, "Process Control Services."

3.2.3.3 Resource Waits and Page Faults - When a process is executing
an 1image, the system can place the process in a wait state until a
required resource becomes available, or until a page in 1its virtual
address space is paged into memory. These waits, which are generally
transparent to the process, can also be interrupted for the delivery
of an AST. '

3.2.4 How ASTs Are Declared

Most ASTs occur as the result of the completion of an asynchronous
event initiated by a system service, for example, a $QIO or $SETIMR
request, when the process requests notification by means of an AST.

There is also a system service that creates ASTs: the Declare AST
(SDCLAST) system service. With this service, a process can declare an
AST only for the same or for a less privileged access mode.

You may find occasional use for the S$SDCLAST system service in your
programming applications; you may also find the $DCLAST service
useful when you want to test an AST service routine.

3.2.5 The AST Service Routine

An AST service routine must be a separate routine. The system calls
the AST with a CALLG instruction; the routine must return using a RET
instruction. If the service routine modifies any registers other than
RO or R1l, it must set the appropriate bits in the entry mask so that
the contents of those registers are saved.

Since it is impossible to know when the AST service routine will begin
executing, you must take care, when you code the AST service routine,
that the service routine does not modify any data or instructions used
by the main procedure.

e

HOW TO USE SYSTEM SERVICES
AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

On entry to the AST service routine, the Argument Pointer register
(AP) points to an argument list that has the format:

31 8 7 0

AST parameter

RO

R1

PC

PSL

The registers RO and R1, the PC, and PSL in this list are those that
were saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine so
that it can identify the event that caused the AST. When you code a
call to a system service requesting an AST, or when you code a $DCLAST
system service, you can supply a value for the AST parameter. If you
do not specify a value, it defaults to O.

Figure 3-5 illustrates an AST service routine. 1In this example, the
ASTs are created by the $DCLAST system service: the ASTs are
delivered to the process immediately, so that the service routine is
called following each $DCLAST system service call.

3.2.6 AST Delivery

When an AST occurs, the system may not be able to deliver the
interrupt to the process immediately. An AST cannot be delivered if
any of the following conditions exist:

1. An AST service routine is currently executing at the same or
at a more privileged access mode.

ASTs are implicitly disabled when an AST service routine
executes, so that one AST routine cannot be interrupted by
another AST routine declared for the same access mode. It
can, however, be interrupted by an AST declared for a more
privileged access mode.

2. AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the
Set AST Enable ($SSETAST) system service. This service may be
useful when a program is executing a sequence of instructions
that should not be interrupted for the execution of an AST
routine.

HOW TO USE SYSTEM SERVICES
AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

3. The process is executing at an access mode more privileged
than that for which the AST is declared.

For example, if a user mode AST is declared as the result of
a system service, but the program is currently executing at a
higher access mode (because of another system service call,
for example), the AST is not delivered until the program is
once again executing in user mode.

If an AST cannot be delivered when the interrupt occurs, the AST is
queued until the condition(s) disabling delivery are removed. Queued
ASTs are ordered by the access mode from which they were declared,
with those declared from more privileged access modes at the front of
the queue. If more than one AST is queued for an access mode, the
ASTs are delivered in the order in which they are queued.

FEGASUS! WORD ¢ JENTRY MASK
$NCLAST..S ASTADR=ASTRTNsASTFRM=4%1 FAST WITH FARM=1
$LCLAST..S ASTADR=ASTRTNsASTFRM=4%2 JAST WITH FARM=2
RET JRETURN CONTROL

ASTRTN? WORD 0 FENTRY MASK
CHMFL. #1v4(AF) sCHECK AST FARAMETER 1
REQL. 10% JIF 1 GOTO 10%
CMFL #2y4CAF) $CHECK FOR FARM=2
REQL 204 sIF 2 GOTO 20%

1042 . FHANDLE FIRST AST
RET FRETURN

2082 . : sHANDLE SECOND AST
RET FRETURN

+

<END FEGASUS

Notes:

" The program PEGASUS calls the Declare AST system service
twice to queue ASTs. Both ASTs specify the AST service
routine, ASTRTN. However, a different parameter is passed
for each call.

@' The first action that this AST routine takes is to check the
AST parameter, so that it can determine if the AST being
delivered is the first or second one declared. The value of
the AST parameter determines the flow of execution.

Figure 3-5 The AST Service Routine

HOW TO USE SYSTEM SERVICES

3.3 LOGICAL NAME SERVICES

The VAX/VMS logical name services provide a technique for manipulating
and substituting character string names. Logical names are commonly
used to specify devices or files for input or output operations. You
can code programs with logical, or symbolic, names to refer to
physical devices or files, and then establish an equivalence, or
actual, name by issuing the ASSIGN command from the command stream
before program execution. When the program executes, a reference to
the logical name results in the substitution of the equivalence name.

This section describes how to use system services to establish logical
names for general application purposes. For specific details on
logical name usage for 1I/0 system services, see Section 3.4,
"Input/Output Services" in this manual, and the discussion of logical
names in the VAX/VMS Command Language User's Guide.

3.3.1 Logical Names and Equivalence Names

Logical name and equivalence name strings can have a maximum of 63
characters. You can establish 1logical name and equivalence name
pairs:

1. At the command level, with the ALLOCATE, ASSIGN, DEFINE, or
MOUNT commands .

2. In a program, with the Create Logical Name ($SCRELOG) and
Create Mailbox and Assign Channel (SCREMBX) system services

For example, you could use the symbolic name TERMINAL to refer to an
output terminal in a program. For a particular run of the program,
you could use the ASSIGN command to establish the equivalence name
TTAZ2:.

To perform an assignment in a program, you must provide character
string descriptors for the name strings and use the $CRELOG system
service as shown in the following example. In either case, the result
is the same: the 1logical name TERMINAL is equated to the physical
device name TTA2:.

TERMINAL ! DESCRIFTOR <TERMINALX sDESCRIFTOR FOR LOGICAL NAME
TTNAME ! DESCRIFTOR <TTAZ1X $DESCRIFTOR FOR EQUIVALENCE

*

$CRELOG.S THRLFLG=#2yL.0OGNAM=TERMINAL y EQLNAM=TTNAME

The TBLFLG argument in this example indicates the logical name table
number, in this case, the process logical name table. Logical name
tables and logical name table numbers are discussed in the following
sections.

HOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

3.3.2 Logical Name Tables

Logical name and equivalence name pairs are maintained in three
logical name tables:

° Process
° Group
[System

A process logical name table contains names used exclusively by the
process. A process logical name table exists for each process in the
system. Some entries in the process logical name table are made by
system programs executing at more privileged access modes; these
entries are qualified by the access mode from which the entry was
made. For example, 1logical names created at the command level are
supervisor mode entries.

The group logical name table contains names that cooperating processes
in the same group can use. The GRPNAM privilege is required to place
a name in the group logical name table.

The system logical name table contains names that all processes in the
system can access. This table includes the default names for all
system—assigned logical names. The SYSNAM privilege 1is required to
place a name in the system logical name table.

Figure 3-6 illustrates some sample logical name table entries.

Notes on Figure 3-6:

" This process logical name table equates the 1logical name
TERMINAL to the specific terminal TTA2:. INFILE and OUTFILE
are equated to disk file specifications: these logical names
were created from supervisor mode.

‘a The group logical name table shows entries qualified by group
numbers; only processes that have the indicated group number
can access these entries.

G’ In Group 100, the logical name TERMINAL is equated to the
terminal TTAl:. Individual processes in Group 100 that want
to refer to the logical name TERMINAL do not have to
individually assign it an equivalence name.

@ Group 200 has entries for logical names MAILBOX and DISPLAY.
Other processes in group 200 can use these logical names for
input or output operations.

.a In Group 300, the logical name TERMINAL is equated to the
physical device name TTA3:. Note that there are two entries
for TERMINAL in the group 1logical name table. These are
discrete entries, since they are qualified by the number of
the group to which they belong.

‘, The system logical name table contains the default physical
device names for all processes in the system. SYSSLIBRARY
and SYS$SSYSTEM provide logical names for all users to refer
to the device(s) containing system files.

HOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

[Logical Name Table for Process A (Group Number = 200)|"

Logical Name Equivalence Name Access Mode
TERMINAL ~ —--—-- > TTA2: User

INFILE W ====== > DM1: [HIGGINS]TEST.DAT Supervisor
OUTFILE ~ =—==—- > DM1: [HIGGINS]TEST.OUT Supervisor

° s

{Group Logical Name Tablel@’

Logical Name Equivalence Name Group Number
© TERMINAL ------ > TTAl: 100
QraILBox 0 ------ > MB3: 200

DISPLAY ———— > TERMINAL 200
© TERMINAL 0 —————- > TTA3: 300

ISystem Logical Name Table}"

Logical Name Equivalence Name
SYSSLIBRARY —-=——-- > DBAO: [SYSLIB]
SYSSSYSTEM =~ =—=——-- > DBAOQO: [SYSTEM]

Figure 3-6 Logical Name Table Entries

3.3.2.1 Logical Name Table Numbers - Each logical name table has a
number associated with it. To place an entry in a logical name table,
specify a logical name table number with the TBLFLG argument to the
SCRELOG system service. The 1logical name table numbers are as
follows:

Table Number"

Process 2
Group 1
System 0

The TBLFLG argument defaults to a value of 0, that 1is, the system
logical name table.

3.3.2.2 Duplication of Logical Names - The process logical name table
can contain entries for the same logical name at different access
modes. The group logical name table can contain entries for the same
logical name, as long as the group numbers are different.

HOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

In all other cases, there can be only one entry for a particular
logical name in a 1logical name table. For example, if the logical
name TERMINAL is equated to TTA2: in the process table as shown in
the figure, and the process subsequently equates the logical name
TERMINAL to TTA3: the equivalence of TERMINAL to TTA2: is replaced
by the new equivalence name. The successful return status code
SS$_SUPERSEDE indicates that a new entry replaced an old one.

Any number of logical names can have the same equivalence name.

3.3.3 Logical Name Translation

When you refer to a logical name for a physical device in an 1I/0
service, the service performs logical name translation automatically.
In many cases, a program must perform the logical name translation to
obtain the equivalence name for a logical name. The Translate Logical
Name ($TRNLOG) system service searches the logical name tables for a
specified logical name and returns the equivalence name.

By default, the process, group, and system tables are all searched, in
that order, and the first match found is returned. Thus if identical
logical names exist in the process and group tables, the process table
entry 1is found first, and the group table is not searched. When the
process logical name table is searched, the entries are searched 1in
order of access mode, with user mode entries matched first, supervisor
second, and so on.

The following example shows a call to the $TRNLOG system service to
translate the logical name TERMINAL.

TLOGRDESC?! DESCRIFTOR <TERMINALX 3DESCRIFTOR FOR INFUT LOGNAM

TEQLDESC? sBUFFER DESCRIFTOR FOR EQLNAME
+LONG 20%~-10% s LENGTH
+LLONG 10% sALDDRESS OF RUFFER

1042 +RLKE 64 sRUFFER OF 64 RYTES

2082 sENDN OF RBUFFER

TLEN? +BLKW 1 FRECEIVE EQLNAM LENGTH HERE

*
*

$TRNLOG..S L.OGNAM=TLOGDESC s RSL.LEN=TLLENs RSLEUF=TEQLDESC

If the logical name table entries are as shown 1in Figure 3-6, this
call to the $TRNLOG system service results in the translation of the
logical name TERMINAL. The equivalence name string TTA2: is placed
in the output buffer described by TEQLDESC. The length of the
equivalence name string is written into the word at TLEN.

Note that the call to $TRNLOG might be coded as follows:
$TRNLOG.S LOGNAM=TLOGIESC y RSLLEN=TEQLDESC yRSLEUF=TEQLDESC

Then, the output equivalence name string length is'written into the
first word of the character string descriptor. This descriptor can
then be used as input to another system service.

3.3.3.1 Bypassing Logical Name Tables - To disable the search of a
particular 1logical name table, you can code the optional argument
DSBMSK to the S$TRNLOG system service. This argument is a mask that
disables the search of one or more logical name tables. The format of
the mask is described in the discussion of the $TRNLOG system service
in Chapter 4.

3-18

'_/,'

HOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

3.3.3.2 Logical Name and Equivalence Name Format Conventions - The
operating system uses special conventions for logical name/equivalence
name assignments and translation. These conventions are generally
transparent to wuser programs; however, you should be aware of the
programming considerations involved.

If a logical name string is preceded with an underscore character (),
$TRNLOG will not translate the logical name. Instead, it returns the
status code SS$_NOTRAN, strips the underscore from the logical name
string, then writes the string into the result buffer. This
convention permits bypassing logical name translation in I/O services
when physical device name strings are specified.

At login, the system creates default logical name table entries for
process permanent files. The equivalence names for these entries, for
example, SYSSINPUT and SYSSOUTPUT, are preceded with a 4-byte header
that contains the following:

Byte (s) Contents

0 "X1B (Escape character)

1 “X00

2-3 RMS Internal File Identifier (IFI)

This header is followed by the equivalence name string. If any of
your program applications must translate system-assigned 1logical
names, the program must be prepared to check for the existence of this
header and then to wuse only the desired part of the equivalence
string.

For an example of how to do this, see Figure 3-8 in Section 3.4.7,
"Complete Terminal I/O Example."

3.3.4 Recursive Translation

When a translate request is made for a 1logical name string, the
STRNLOG system service searches the logical name tables only once. If
you structure a logical name table or tables such that 1logical name
equivalencies are several levels deep (that is, that an equivalence
name is entered in the table as a logical name with another equivalence
name, and so on), you may require recursive logical name translation.
Note that Figure 3-6 illustrates recursive entries: the logical name
DISPLAY 1is equated to the string TERMINAL in the group table, and the
name TERMINAL is equated to the device name string TTA2: in the
process table. The S$TRNLOG system service must be used twice to
complete the translation of the logical name DISPLAY.

You can code a program loop so that the output string from the $TRNLOG
service 1is reused as the input string, and check for the status code
SS$ NOTRAN following the call to the service. SS$ NOTRAN indicates
that no 1logical name was found, and that the input string has been
written into the output buffer.

3.3.5 Deleting Logical Names

The Delete Logical Name ($SDELLOG) system service deletes entries from
a logical name table. When you code a call to the $DELLOG system
service, you can specify a single logical name to delete, or you can

HOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

specify that you want to delete all logical names from a particular
table. For example, the following call deletes all names from the
process logical name table that were entered in the table from user
mode:

$OELLOG.S TRLFLG=%#2

Logical names that were placed in the process logical name table from
an image running in user mode are automatically deleted at image exit.
Entries made from the command stream are placed in the table by the
command interpreter; these are supervisor mode entries, and are not
deleted at image exit.

HOW TO USE SYSTEM SERVICES

3.4 INPUT/OUTPUT SERVICES

There are two methods you can use to perform input/output operations
under VAX/VMS:

° VAX-11 Record Management Services (RMS)
° I/0 system services
VAX-11 RMS ©provides a set of macros for general-purpose,

device-independent functions, such as data storage, retrieval, and
modification.

The I/0 system services permit you to use the I/0 resources of the
operating system directly in a device-dependent manner. I/O services
also provide some specialized functions not available in RMS. Using
I/0 services requires more knowledge on your part, but can result in
more efficient input/output operations.

This section provides general information on how to use the 1I/0
services, including:

® Assigning channels

® Queuing I/0O requests

° Allocating devices

° Using mailboxes
Examples are provided to show you how to wuse the I/0 services for
simple functions, for example, terminal input and output operations.

If you plan to write device-dependent I/0 routines, see the VAX/VMS
I/0 User's Guide. :

3.4.1 Assigning Channels

Before any input or output operation can be done to a physical device,
a channel must be assigned to the device to provide a path between the
process and the device. The Assign I/O Channel ($SASSIGN) system
service establishes this path.

When you code a call to the $ASSIGN service, you must supply the name
of the device, which may be a physical device name or a logical name,
and the address of a word to receive the channel number. The service
returns a channel number, and you use this channel number when .you
code an input or an output request.

For example, the following lines assign an I/0 channel to the device
TTA2. The channel number is returned in the word at TTCHAN.

TTNAME ! DESCRIFTOR <TTAR2:: S TERMINAL DESCRIFTOR
TTCHAN? o BLKW 1 s TERMINAL CHANNEL NUMEBER

+

FASETIGN..S DEUNAM=TTNAME y CHAN=TTCHAN
To assign a channel to the current default input or output device, you
must first translate the logical name SYS$SINPUT or SYSSOUTPUT with the

Translate Logical Name ($STRNLOG) system service. Then, specify the
equivalence name returned as the DEVNAM argument to the SASSIGN system

3-21

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

service. This technique requires you to interpret header information
preceding the equivalence name string for these devices. For an
example of this technique, see Figure 3-8 later in this section.

For more details on how SASSIGN and other I/O services handle 1logical
names, see Section 3.4.10 "Logical Names and Physical Device Names."

3.4.2 Queuing I/0O Requests

All input and output operations in VAX/VMS are initiated with the
Queue I/0 Request ($QIO) system service. $QIO gueues the request and
returns; while the operating system processes the request, the
program that issued the request can continue execution.

Required arguments to the $QIO service include the channel number
assigned to the device on which the I/O is to be done, and a function
code (expressed symbolically) that indicates the specific operation to
be performed. Depending on the function code, one to six additional
parameters may be required.

For example, the I0O$ WRITEVBLK and IO$_READVBLK function codes are
device-independent <Codes used to read and write single records or
virtual blocks. These function codes are suitable for simple terminal
I/0. They require parameters indicating the address of an input or
output buffer and the buffer length. A call to $QIO to write a line
to a terminal might appear as:

$QI0..8 CHAN=TTCHANsFUNC=#I0%_WRITEVELKy
Fl=RUFADDR s F2=RUFL.EN

Function codes are defined for all supported device types, and most of
the codes are device dependent, that is, they perform functions that
are specific to a particular device. The $IODEF macro defines
symbolic names for these function codes. The codes are summarized in
Appendix A, "System Symbolic Definition Macros;" for details on all
function codes and an explanation of the parameters required by each,
see the VAX/VMS I/0 User's Guide.

3.4.3 Synchronizing I/0 Completion

The $QIO system service returns control to the calling program as soon
as the 1I/0 request 1is queued; the status code returned in RO
indicates whether or not the request was queued successfully. To
ensure proper synchronization of the I/O operation with respect to the
program, the program must:

1. Test for the completion of the I/O operation

2. Test whether the I/O operation itself completed successfully
Optional arguments to the $QIO service provide techniques for
synchronizing I/O completion. There are three methods you can use to

test for the completion of an I/O request:

° Specify the number of an event flag to be set when the 1I/0
completes

° Specify the address of an AST routine to be executed when the
I/0 completes

. .
~—

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

° Specify the address of an I/O status block in which the
system can place the return status when the I/0 completes

Examples of using these three techniques are shown in Figure 3-7.

lExample 1l: Event Fla951"

$QI0N.S EFN=%FLlys... F ISSUE 18T I/0 REQUEST
RSEW ERROR § QUEUELD SUCCESSFULLY®T
$QIO_S EFN=%2y 44 ISSUE 2ND I/0 REQUEST
RSEW ERROR QUEUED SUCCESSFULLY®T

e’#UFLANDWS EFN=%0yMASK=#"E110 $SWAIT TIL BOTH DONE

Notes on Example 1:

" When you code an event flag number as an argument, $QIO
clears the event flag when it queues the I/O request. When
the I/0 completes, the flag is set.

©® 1In this example, the program issues two I/0 requests. A
different event flag is specified for each request.

© The Wait for Logical AND of Event Flags (SWFLAND) system
service places the process in a wait state until both I/O
operations are complete. The EFN argument indicates that the
event flags are both in cluster O0; the MASK argument
indicates the flags that are to be waited for.

|Examp1e 2: An AST Routine"'

$QI0..8 - +++ yASTADR=TTAST yASTFRM=%1y s+ $1/0 WITH AST

BSEW ERROR §QUEUED SUCCESSFULLY®?
. s CONTINUE
TTASTS: WORD O‘a $AST SERVICE ROUTINE ENTRY MASK
. sHANDLE I/0 COMFLETION
RET FEND OF SERVICE ROUTINE

Notes on Example 2:

@ vhen you code the ASTADR argument to the $QIO system service,
the system interrupts the process when the I/0 completes and
passes control to the specified AST service routine.

e’ The $QI0 system service call specifies the address of the AST
routine, TTAST, and a parameter to pass as an argument to the
AST service routine. When $QIO returns control, the process
continues execution. :

G’ When the I/0O completes, the routine TTAST is called, and it
responds to the I/O completion.

When this routine is finished executing, control returns to
the process at the point at which it was interrupted.

Figure 3-7 Synchronizing I/O Completion

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

[Example 3: The I/O Status Block|"

TTIOSES JELKQ 1@) $1/0 STATUS RLOCK

-
¢

¢,$GIUMS v oo [OSB=TTIOGEY + 4 s ISSUE I/0 REQUEST

BRSERW ERROR sQUEUED SUCCESSFULLY®?
. s CONTINUE
1042 TSTW TTIOSB" sI6 170 DONE YET?
REQL 10% sNOy LOOF TIL DONE
CMFW TTIOSEy #5854 . NORMAL $1/70 SUCCESSFULT?
BNEQIOERR iNOy ERROR
. FYESs HANDLE IT

L3

Notes on Example 3:

An I/O status block is a quadword structure that the syétem
uses to post the status of an I/O operation. The gquadword
area must be defined in your program.

TTIOSB defines tne I/0 status block for this 1I/0 operation.
The TIOSB argument in the $QIO system service refers to this
quadword.

$QIO clears the quadword when it queues the I/0 request.
When the request is successfully queued, the program
continues execution.

The process polls the I/0 status block. If the low-order
word still contains 0, the I/O operation has not vyet
completed. 1In this example, the program 1loops until the
request is complete. :

Figure 3-7 (Cont.) Synchronizing I/0 Completion

3.4.4 1I/0 Completion Status

When an I/0 operation completes, the system posts the completion
status in the I/O status block, if one is specified. The completion
status indicates whether or not the operation actually completed
successfully, the number of bytes that were transferred, and
additional device-dependent return information.

The format of the information written in the IOSB is:

31 16 16~ 0

count status

device-dependent information

SN’

N

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

The first word contains a system status code indicating the success or
failure of the operation. The status codes used are the same as for
all returns from system services; for example, SS$_NORMAL indicates
successful completion.

The second word contains the number of bytes actually transferred in
the I/0 operation.

The second longword contains device-dependent return information.

To ensure successful 1I/0 completion and the integrity of data
transfers, the IOSB should be checked following I/O requests,
particularly for device-dependent I/O functions. For complete details
on how to use the I/O status block, see the VAX/VMS I/0 User's Guide.

3.4.5 Simplified Forms of the $QIO Macro

The $QIOW macro combines the functions of the $QIO and the Wait for
Single Event Flag (SWAITFR) system services. SQIOW has the same
arguments as the $QIO macro. It gqueues the 1I/0 request, and then
places the program in a wait state until the I/O is complete.

The SINPUT and S$SOUTPUT macros are a subset of the $QIOW macro: they
use only the function codes to read and write virtual blocks or
records (IO$_READVBLK and IO$_WRITEVBLK, respectively). These macros
provide an efficient and easy way to specify I/0 for terminals,
mailboxes, line printers, and interprocess network transfers.

When you code a $INPUT or S$OUTPUT macro, you must specify the channel
on which the I/0 is to be performed and the length and address of the
input or output buffer. Optionally you can specify an event flag to
be set when the I/0 1is complete and the address of an I/0O status
block. For example:

SINFUT CHAN=TTCHAN s LENGTH=INLEN RUFFER=INRBUF s EFN=%1, I08E=TTIOGSE
or

SOUTFUT CHAN=TTCHAN LENGTH=0UTLENy BUFFER=0QUTRBUF y EFN=%2y TOSR=TTIOSK

3.4.6 Deassigning I/0 Channels

When a process no longer needs access to an I/0 device, it should
release the channel assigned to the device by issuing the Deassign I/O
Channel ($DASSGN) system service. For example:)

$0ASSGN..S CHAN=TTCHAN

.This service call releases the terminal channel assignment acquired in

the S$ASSIGN example shown earlier. The system automatically deassigns
channels for a process when the image that assigned the channel exits.

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

3.4.7 Complete Terminal I/O Example

Figure 3-8 shows a complete sequence of input and output operations
using the SINPUT and $OUTPUT macros to read and write lines to the
current default SYS$INPUT device. Note that if the program containing
these lines 1is executed interactively, the input/output is to the
current terminal.

TTNAME! DESCRIFTOR {SYS$INPUT}" FDESCRIFTOR FOR TERMINAL NAME
TTCHAN? RLKW 1 $RECETVE CHANNEL NUMRER HERE
TTIOSE? RLKW ie’ sFIRST WORD OF IOSEy STATUS
TTIOLEN?

+BLKW 1 FSECOND WORDy GET LENGTH

+ RLKL 1 - SECOND LONGWORLD OF IOSE
QUTLEN? +BLKL 1 FLENGTH OF STRING TO OUTFUT
INRUF! BLKE 80‘, sRUFFER TO READ INFUT
DEVLESC: sDESCRIFTOR
NLEN? +LONG 63 sBUFFER LLENGTH

NADDR? . L.ONG NAME sANDRESS OF RUFFER
NAME ¢ +BLKR 63

*

*

¢’$TRNLOGMS LOGNAM=TTNAME » RELLEN=NLENs RSLERUF=NEVDESC

CMFER NAME » #"X1R SNOES NAME REGIN WITH ESCAFE®?

ENEQ 104 iNOs SKIF

SUEL #4 5 NLEN FOTHERWISE s SUBTRACT 4 FROM LENGTH
ALDL #4 5 NADDR FADD 4 TO ADDRESS

1042 €’$ASSIGNWS DEVNAM=DIEVIESC s CHAN=TTCHAN $ASSIGN CHANNEL
RSRW ERROR

¢,$INPUT CHAN=TTCHANy LENGTH=%80 RUFFER=INEUF » IOSE=TTIQOSR
BSEW ERROR

¢'CMPN TTIOSEy #5854 .NORMAL. s 170 SUCCESSFULT
ENEQ I0.ERR JERROR IF NOT. ..
c,HOUZNL TTIOLEN»OQUTLEN SGET LENGTH QUT OF IOSE

c’$0UTPUT CHAN=TTCHAN» LENGTH=0UTLENy BUFFER=INRUF » IOSE=TTIOSE
RSEW ERROR

CHMFW TTIOSEy #5354 .NORMAL F SUCCESSFULT

BNEQ T0.LERR FBRANCH IF NOT
ﬂ)$DASSGNWS CHAN=TTCHAN sNONE» DEASSIGN CHANNEL

RSEW ERROR

Figure 3-8 Example of Terminal Input and Output

Notes on Figure 3-8:

" TTNAME is a character string descriptor for the logical
device SYSSINPUT and TTCHAN is a word to receive the channel
number assigned to it. :

e’ The IOSB for the I/O operations is structured so that the
program can easily check for the completion status (in the
first word) and the length of the input string returned (in
the second word).

R

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

e’ The string will be read into the buffer INBUF; the longword
OUTLEN will contain the length of the string for the output
operation.

¢’ The Translate Logical Name (STRNLOG) system service
translates the 1logical name SYSSINPUT. On return from
STRNLOG, the equivalence name is checked for a 4-byte header
beginning with an escape character. (This header is present
in all process permanent files; see Section 3.3.3.2,
"Logical Name and Equivalence Name Format Conventions.")

If this header 1is present, the program modifies the
descriptor for the device name returned, so it can be used as
input to $ASSIGN.

SASSIGN assigns a channel and writes the channel number at
TTCHAN.

@ 1f the SASSIGN service completes successfully, the S$INPUT
macro reads a line from the terminal, and requests that the
completion status be posted in the I/O status block defined
at TTIOSB.

@ The process waits until the I/O is complete, then checks the
first word 1in the I/0 status block for a successful return.
If not successful, the program takes an error path.

(’ Next, the length of the string read 1is moved into the
longword at OUTLEN. This is necessary because the S$OUTPUT
macro requires a longword argument, and the length field of
the 1I/0 status block is only a word long. The $OUTPUT macro
writes the line just read to the terminal.

G’ The program performs error checks: first, it ensures that the
SOUTPUT macro successfully queued the I/O request; then,
when the request is completed, it ensures that the I/O was
successful.

@ when all I/0 operations on the channel are finished, the
channel is deassigned.

3.4.8 Canceling I/0 Requests

If a process must cancel an I/0 request that has been queued but not
yet completed, it can issue the Cancel I/O On Channel (SCANCEL) system
service. All pending I/Q requests 1issued by the process on that
channel are canceled.

For example, the $SCANCEL system service can be called as follows:
$CANCEL...5 CHAN=TTCHAN

In this éxample, the S$CANCEL system service initiates the cancellation
of all pending I/0 requests to the channel whose number is located at
TTCHAN.

The S$CANCEL system service returns after initiating the cancellation
of the I/0 requests. If the call to $QIO specified an event flag, AST
service routine, or I/0 status block, the system sets the flag,
delivers ‘the AST, or posts the I/0 status block as appropriate when
the cancellation is actually completed.

3-27

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

3.4.9 Device Allocation

Many I/O devices are shareable; that is, more than one process you
access the device at a time. Each process, by issuing a $ASSIGN
service, is given a channel to the device for I/O operations.

In some cases, a process may need exclusive use of a device so that
data is not affected by other processes. To reserve a device for
exclusive use you must allocate it.

Device allocation is normally accomplished from the command stream,
with the ALLOCATE command. A process can also allocate a device by
calling the Allocate Device ($ALLOC) system service. When a device
has been allocated by a process, only the process that allocated the
device and any subprocesses it creates <can assign channels to the
device.

When you code the $SALLOC system service, you must provide a device
name. The device name specified can be:

® A physical device name, for example, the tape drive MTB3:
® A logical name, for example, TAPE
® A generic device name, for example, MT:

If you specify a physical device name, S$ALLOC attempts to allocate the
specified device.

If you specify a logical name, SALLOC translates the logical name and
attempts to allocate the physical device name equated to the logical
name.

If you specify a generic device name -- that 1is, if you specify a
device type, but do not specify a controller and/or unit
number -- SALLOC attempts to allocate any device available of the

specified type. More information on the allocation of devices by
generic names is provided in Section 3.4.10.1.

When you specify logical names or deneric device names, you must
provide fields for the SALLOC system service to return the name and
the length of the physical device that is actually allocated, so vyou
can provide this name as input to the $ASSIGN system service.

Figure 3-9 illustrates the allocation of a tape device specified by
the logical name TAPE.

Notes on Figure 3-9:

" The S$ALLOC system service call requests allocation of a
device corresponding to the logical name TAPE, defined by the
character string descriptor LOGDEV. The argument DEVDESC
refers to the buffer provided to receive the physical device
name of the device actually allocated, and its length.
SALLOC translates the 1logical name TAPE and returns the
equivalence name string into the buffer at DEVDESC. It
writes the length of the string in the first word of DEVDESC.

e’ The $ASSIGN command uses the character string returned by the
$ALLOC system service as the input device name argument, and
requests that the channel number be written into TAPECHAN.

P

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

LOGDEV?: DESCRIFTOR < TAFE: sLOGICAL NAME FOR TAFE
DEVIESC: ' sDESCRIFTOR FOR FHYSICAL NAME
+LONG 2046~-10% sLENGTH OF RUFFER
+LONG 10% sADDRESS OF BUFFER
1042 + BLKE 64 sGET FHYSICAL NAME RETURNED
20%2
TAFECHAN?
« BLKW 1 # CHANNEL. FOR TAFE I1/0

+

*

$AL.LOC..S DEVUNAM=LOGDEVsFHYLEN=DEVDESC y FHYRUF=DEVIESC
RSEW ERROR
€’$QSSIGNWS DEUNAM=0EVIESC» CHAN=TAFECHAN 3ASSIGN CHANNEL
ESEW ERROR
. sCONTINUE WITH I/0

$0ASSGN..S CHAN=TAFECHAN ' sDEASSIGN CHANNEL
ESEW ERROR
T $DALLOC.LS DEVUNAM=DEVDESC sDEALLOCATE TAFE

Figure 3-9 Device Allocation and Channel Assignment

G’ When I/O operations are completed, the $DASSGN system service
deassigns the channel and the $DALLOC system service
deallocates the device. The channel must be deassigned
before the device can be deallocated.

3.4.9.1 Implicit Allocation - Devices that cannot be shared by more
than one process, for example, terminals and line printers, do not
have to be explicitly allocated. Since they are nonshareable, they
are implicitly allocated by the $ASSIGN system service when S$ASSIGN is
called to assign a channel to the device.

3.4.9.2 Deallocation - When the program is finished using an
allocated device, it should release the device with the Deallocate
Device ($DALLOC) system service, to make it available for other
processes as in this example:

$OALLOC.S DEVNAM=DEVIESC

The system automatically deallocates devices allocated by an image at
image exit.

3.4.10 Logical Names and Physical Device Names

When a device name is specified as input to an I/0O system service, it
can be a physical device name or a logical name. When an underscore
character (_) precedes a device name string, it indicates that the
string is a physical device name string. For example:

TTNAME: DESCRIFTOR <. TTE31:

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

Any string that does not begin with an wunderscore 1is considered a
logical name, even though it may be a physical device name. The
SASSIGN, SDASSGN, SALLOC, and $DALLOC system services call the
Translate Logical Name ($TRNLOG) system service to search the logical
name tables. The S$STRNLOG service searches the process, group, and
system tables, in that order, and if it locates an entry is found for
the specified logical name, the 1I/O request 1is performed for the
device specified in the equivalence name string. The search is not
recursive.

If $TRNLOG does not locate an entry for the 1logical name, the I/O
service treats the name that is specified as a physical device
name. When you code the name of an actual physical device in a call
to one of these services, code the underscore character to bypass the
logical name translation.

When the $ALLOC system service returns the device name of the physical
device that has been allocated, the device name string returned is
prefaced with an underscore character. When this name is used for the
subsequent $ASSIGN system service, the SASSIGN service does not
attempt to translate the device name.

If you use logical names in I/O service calls, you must be sure to
establish a valid device name equivalence before program execution.
You can do this by issuing an ASSIGN command from the command stream.
Or, the program can establish the equivalence name before the I/0
service call with the Create Logical Name ($CRELOG) system service.

For details on how to create and use logical names, see Section 3.3,
"Logical Name Services."

3.4.10.1 Device Name Defaults - If, after logical name translation, a
device name string in an I/O system service call does not fully
specify the device name (that is, device, controller, and unit), the
service either provides default values for nonspecified fields, or
provides values based on device availability.

The following rules apply:

1. The $ASSIGN, S$DASSGN, and $DALLOC system services apply
default values as shown in Table 3-2.

2. The S$ALLOC system service treats the device name as a generic
device name and attempts to find a device that satisfies the
components of the device name that are specified, as shown in
Table 3-2.

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

Table 3-2
Default Device Names for I/O Services
Device Name
Final Device Defaults for Generic Device
Name SASSIGN, S$DASSGN, | Names Used
Specification and $DALLOC by SALLOC

DD: DDAO : (unit 0 DDen: (any available device of
on controller A) the specified type) -

DDC': DDCO: (unit O DDCn: (any available unit on
on controller the specified controller)
specified)

DDN : DDAN: (unit. DDeN: (device of specified
specified on type and unit on any available
controller A) controller)

DDAN: DDAN : DDAN s

Key:

DD: is the device type specified
C: is the controller specified
e: is any controller

N: is the unit number specified
ne is any unit number

3.4.11 Obtaining Information About Physical Devices

In cases where a generic (that is, nonspecific) device name is used in
an I/O service, the program may need to find out what device has
actually been used. The Get I/O Channel Information (SGETCHN) system
service provides specific information about the physical device to
which a channel has been assigned. The Get 1I/0 Device Information
(SGETDEV) system service returns information about a device that is
identified by its device name. The information returned includes the
unit number of the device, as well as additional device
characteristics.

When you code the $GETCHN or S$GETDEV service, you must provide the
address of a buffer or buffers 1into which the system writes the
information. The format of the buffer, and additional details about
these services are given in Chapter 4. Details on the device-specific
information these services return is given in the VAX/VMS 1I/0 User's
Guide.

3.4.12 Formatting Output Strings

When you are preparing output strings for a program, you may need to
insert variable information into a string prior to output, or you may
need to convert a numeric value to an ASCII string. The Formatted
ASCII Output ($FAO) system service performs these functions.

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

Input to the $FAO service consists of:

1. A control string that contains the fixed text portion of the
output and formatting directives. The directives indicate
the position within the string where substitutions are to be
made, and describe the data type and length of the input
values that are to be substituted or converted.

2. An output buffer to contain the string after conversions and
' substitutions have been made.

3. An optional argument indicating a word to receive the final
length of the formatted output string.

4. Parameters that provide arguments for the directive.

Figure 3-10 shows a call to the §FAO system service to format an
output string for a $OUTPUT macro. Accompanying notes briefly discuss
the input and output requirements of FAO. Complete details on how to
use FAO, with additional examples, are provided in the description of
the SFAO system service in Chapter 4.

"FﬁOST“: DESCRIFTOR <FILE !'AS DOES NOT EXIST:» $FAOQ CONTROL STRING

t’FﬁOUESC:.LONG FAOLEN~-FAQRUF sDESCRIFTOR FOR FAQ OUTFUT
+LONG FAORUF FANDRESS OF BUFFER
FAORUF: .RLKE 80 sOUTFUT. RUFFER
FAQLEN? LONG © : FRECEIVE LENGTH OF FAO OQUTFUT STRING

G’FILESPEC: DESCRIFTOR <DMALIMYFILE.DAT:> SDESCRIFTOR FOR FAQ FARAMETER

®

‘,$FAUWS CTRSTR=FAQSTR s OUTLEN=FAQLENy» QUTRUF =FAQDESC» ~
FL=dF ILESFEC FFARAMETER FOR FAO
BSRW ERROR ’
€’$OUTPUT v oo s BUFFER=FAOBUF y LENGTH=FAOLEN
RSRW ERROR

Figure 3-10 Example of Using Formatted ASCII Output Program

Notes on Figure 3-10:

" FAOSTR provides the FAO control string. !AS is an example of
an FAO directive: it requires an 1input parameter that
specifies the address of a character string descriptor. When
FAO 1is <called to format this control string, !AS will be
substituted with the string whose address is specified.

e’ FAODESC is a character string descriptor for the output
buffer; $FAO will write the string into the buffer, and will
write the length of the final formatted string 1in the
low-order word of FAOLEN. (A longword is reserved so that it
can be used for an input argument to the S$OUTPUT macro.)

@© FILESPEC is a character string descriptor defining an input
- string for the FAO directive !AS.

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES
" The call to $FAO specifies the control string, the output
buffer and length fields, and the parameter Pl, which is the
address of the ' string descriptor for the .string to be
substituted.

@ vhen $FAO completes successfully, $OUTPUT writes the output
string:

FILE IMALIMYFILE.DAT DOES NOT EXIST

3.4.13 Mailboxes

Mailboxes are virtual devices that can be used for communication
between processes. Actual data transfer is accomplished by using RMS
or I/0 services. When a mailbox is created, a channel is assigned to
it for use by the creating process. Other processes can then assign
channels to the mailbox using the $ASSIGN system service.

The Create Mailbox and Assign Channel ($SCREMBX) system service creates
the mailbox. The $CREMBX system service identifies a mailbox by a
user-specified logical name and assigns it an equivalence name. The
equivalence name is a physical device name in the format MBn: where n
is a unit number.

When another process assigns a channel to the mailbox with the $ASSIGN
system service, it can 1identify the mailbox by its logical name.
SASSIGN automatically translates the logical name. The process can
obtain the MBn: name by translating the logical name (with ‘the
STRNLOG system service), or it can call the Get I/0 Channel
Information (SGETCHN) system service to obtain the unit number and the
physical device name.

Mailboxes are either temporary or permanent; user privileges are
required to create either type. S$CREMBX enters the logical name and
equivalence name for a temporary mailbox in the group logical name
table of the process that created it. The system deletes a temporary
mailbox when no more channels are assigned to it.

The $CREMBX system service enters the logical name and equivalence
name for a permanent mailbox in the system logical name table.

Permanent mailboxes continue to exist until they are specifically
marked for deletion with the Delete Mailbox ($DELMBX) system service.

Figure 3-11 shows an example of processes communicating by means of a
mailbox. The accompanying notes explain some of the arguments that
the SCREMBX system service requires.)

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

Process ORION

MRLOGNAM?! DESCRIFTOR <GROUFL100_MAILEOX:> $iMAILROX LOGICAL NAME

MRUFFER? F INFUT RUFFER FOR MAILROX READS
+BLKE 128 §BUFFER OF 128 RYTES

MBUFLEN? .L.ONG MBUFLEN-MBUFFER $JRUFFER LENGTH

MEXCHAN? JBLKW 1 iMAILEOX CHANNEL NUMEBER
MEXIOSE? .RBLLKW 1 $10SE FIRST WORD (STATUS)
MELEN: JBLKW 1 $I0SE 2ND WORD (LENGTH)
+BLKL 1 FREMAINDER OF IOSE
OUTLEN? RLKL 1 sLONGWORD TO GET LENGTH
v
ORION?! JWORD "M<R2syRIsR4x FENTRY MASK

$CREMERX..8 PRMFLGW%O;CHANﬁMBXCHANthXMSGxMBUFLEN—"
RUFQUO=%#384 y FROMSK=#"X0000 s LOGNAM=MEL.OGNAM

RSEW ERROR

$QI0.S CHﬁNﬂMHXCHANyFUNC=#IO$_REﬁDUBLK7IOSHzMBXIOSBv~‘b
ASTADR=MEXASTyF1=MBUFFERy F2=MBUFLEN

RSERW ERROR

+

RET

MEXAST! JWORD © e’ §AST ROUTINE ENTRY MASK
CMFW MBXIOSREy#S6$. .NORMAL 31/0 SUCCESSFUL?T
BNEQ ASTERR s BRANCH IF NOT

MOVZUWL. MRLENyOUTLEN $MAKE LENGTH A LONGWORD
$OUTFUT + 4+ v BUFFER=MRUFFER» LENGTH=0UTLENy ¢ + »
RSEW ERROR

(3

RET

Process CYGNUS

MAILROX? DNESCRIFTOR <GROUF100.MATLEOX> $MAILROX LOGICAL NAME

MAILCHAN? sMATLROX CHANNEL NUMRER
WBLKW 1

OUTRUF? RBLKE 128 SRUFFER FOR OQUTPUT MSG DATA

OQUTLEN? JBLKL 1 FWILL CONTAIN LENGTH OF MSG

CYGNUS?! WORD "MuR2yR3I»RA4% SENTRY MASK

HFASEIGN..S DEVUNAM=MATLBOXy CHAN=MAILCHAN $ASSIGN CHANNEIL
BSEBW ERROR

FOUTFUT CHAN=MATLCHAN BUFFER=0UTRUF » LENGTH=0UTLENy ...
BRERW ERROR

+

RET

Figure 3-11 Mailbox Creation and I/0

Ny

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

Notes on Figure 3-11:

Process ORION creates the mailbox and receives the channel
number at MBXCHAN.

This PRMFLG argument indicates that the mailbox is a
temporary mailbox. The logical name is entered in the group
logical name table.

The MAXMSG argument limits the size of messages that the
mailbox <can receive. Note that the size indicated in this
example is the same size as the buffer (MBUFFER) provided for
the $QIO request. A buffer for mailbox I/O must be at least
as large as the size specified in the MAXMSG. argument.

When a process creates a temporary mailbox, the amount of
system memory that 1is allocated for buffering messages is
subtracted from the process's buffer quota. Use the BUFQUO
argument to specify how much of the process quota you want to
be used for mailbox message buffering.

Mailboxes are protected devices. By specifying a protection
mask with the PROMSK argument, you can restrict access to the
mailbox. (In this example, all bits in the mask are <clear,
indicating unlimited read and write access.)

. After creating the mailbox, Process ORION issues a $QIO

system service, requesting notification of the completion of
I/0 (that is, the reception of a message) by means of an AST
interrupt (the AST service routine 1is at MBXAST). The
process can continue executing.

When a message is sent to the mailbox, the AST is delivered,
and ORION responds to the message. ORION gets the length of
the message from the first word of the I/0 status block at
MBXIOSB and places it in the longword OUTLEN so it can pass
the length to $OUTPUT.

Process CYGNUS assigns a channel to the mailbox, specifying
the logical name the process ORION gave the mailbox. The
SOUTPUT form of the $QIO system service writes a message from
the output buffer provided at OUTBUF.

3-35

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

3.4.13.1 System Mailboxes - The system uses mailboxes for
communication among system processes. All system mailbox messages
contain, in the first word of the message, a constant that identifies
the sender of the message. These constants have symbolic names
(defined in the $MSGDEF macro) in the format:

MSG$_sender

The remainder of the message contains variable information, depending
on the system component that is sending the message.

The format of the variable information for each message type is
documented with the system function that uses the mailbox.

3.4.13.2 Mailboxes for Process Termination Messages - When a process
creates another process, it can specify the unit number of a mailbox
as an argument to the Create Process (SCREPRC) system service. When
the created process 1is deleted, the system sends a message to the
specified termination mailbox. An example of how to create and use a
termination mailbox is provided in Section 3.5.7.2, "Termination
Mailboxes."

3.4.13.3 Mailboxes for System Processes - There are a group of 1I/0
services that are used internally by system processes to communicate
various kinds of information. These services are:

° Send Message to Accounting Manager ($SNDACC)

° Send Message to Operator ($SSNDOPR)

) Send Message to Symbiont Manager ($SNDSMB)
Details on the formats of the messages anpd the information they

provide are given in the individual discussions of these services in
Chapter 4.

HOW TO USE SYSTEM SERVICES

3.5 PROCESS CONTROL SERVICES

A process is the primary execution agent in VAX/VMS. When you log
into the system, the system creates a process for the execution of
program images. When you issue the DCL command RUN, you can request
the RUN command to create another process to execute an image,

You can also code a program that creates another process to execute a
particular image.

Process control services provide techniques for controlling a process
or group of processes.

Included in this section are discussions of:
° Subprocesses and detached processes
° The execution context of a process
) Process creation
° Interprocess control and communication
° Process hibernation and suspension
° Image exit and exit handlers

e Process deletion and termination messages

3.5.1 Subprocesses and Detached Processes

A process is either a subprocess or a detached process. A subprocess
receives a portion of 1its creator's resource quotas, and must
terminate before the «creator. A detached process is fully
independent; for example, the process the system creates for you when
you log in is a detached process.

The Create Process (SCREPRC) system service creates both subprocesses
and detached processes. The ability to «create subprocesses is

controlled by the PRCLM gquota. The ability to «create detached
processes is controlled by the DETACH privilege.

3.5.2 The Execution Context of a Process

The execution context of a process defines a process to the system.
It includes:

e The image that the process is executing

e The input and output streams for the image executing in a
process

e Disk and directory defaults for the process

® System resource quotas and user privileges available to a
process

When the system creates a detached process as the result of a 1login,
it wuses the system authorization file to determine the process's
execution context.

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

For example, when you log into the system:
e The process created for you executes the image known as login.

e The terminal you are using 1is established as the input,
output, and error stream for images that the process executes.

® Your disk and directory defaults are taken from the user
authorization file.

e The resource quotas and privileges you have been granted by
the system manager are associated with the created process.

When you code the $CREPRC system service to create a process, you
define the context by specifying arguments to the service.

3.5.3 Process Creation

The following sections show examples of process creation and describe
how the arguments you code to the $CREPRC system service define the
context of the process.

3.5.3.1 Defining an Image for a Subprocess to Execute - When you code
the S$CREPRC system service, use the IMAGE argument to provide the
process with the name of a program image to execute. For example, the
following 1lines create a subprocess to execute the program image in
the file named LIBRA.EXE.

FROGNAME: DESCRIFTOR < LIBRAX s IMAGE TO EXECUTE

*

$CREFRC..S IMAGE=FROGNAME FCREATE FROCESS TO EXECUTE LIERA

In this example, only a file name is specified; the service uses
current disk and directory defaults, performs 1logical name
translation, uses the default file type of EXE, and locates the most
recent version of the image file. When the subprocess completes
execution of the image, the subprocess is deleted. Process deletion
is described in Section 3.5.7.

3.5.3.2 Input, Output, and Error Devices for Subprocesses - When you
code the SCREPRC system service you can provide equivalence names for .
the logical names SYS$INPUT, SYS$SOUTPUT, and SYSSERROR. These logical
name/equivalence name pairs are placed in the process logical name
table for the created. process.

3-38

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Figure 3-12 shows an example of defining 1input, output, and error
devices for a subprocess. The notes indicate how these devices are
used.

INSTREAM: DESCRIFTOR <SUB.MAIL..ROXX> s INFUT STREAM
QUTSTREAM! DESCRIFTOR <COMFUTE.OQUT: FOUTFUT STREAM
FROGNAME: DESCRIFTOR < COMFUTE ,EXE> § IMAGE NAME

*

*

$CREFRC..S IMAGE=FROGNAME » INFUT=INSTREAMy -~ §CREATE FROCESS
OUTFUT=0DUTSTREAMy ERROR=0UTSTREAM

Notes:

" The INPUT argument equates the equivalence name SUB_MAIL_BOX
to the logical name SYSSINPUT. This logical name may
represent a mailbox that the calling process previously
created with the Create Mailbox and Assign Channel ($SCREMBX)
system service. Any input the subprocess reads from the
logical device SYSSINPUT will be read from the mailbox.

g’ The OUTPUT argument equates the equivalence name COMPUTE.OUT
to the logical name SYS$SOUTPUT. All messages the program
writes to the logical device SYS$SOUTPUT will be written to
this file.

G’ The ERROR argument equates the equivalence name COMPUTE.OUT
to the 1logical . name SYS$SERROR. All system-generated error
messages will be written into this file. Since this is the
same file as that used for program output, the file
effectively contains a complete record of all output produced
during the execution of the program image.

Figure 3-12 Defining Input and Output Streams for a Subprocess

The SCREPRC system service does not provide default equivalence names
for these logical names; if none are specified, entries in the group
or system logical name tables, if any, may provide equivalences. If,
while the subprocess executes, 1t reads or writes to one of these
logical devices and no equivalence name exists, an error condition
results.

You can code a program that creates a subprocess to share the logical
input, output, or error devices of the creating process. The
following steps are required:

e Use the Translate Logical Name (STRNLOG) system service to
obtain the current equivalence name for the logical name.

e Check whether the equivalence name returned contains system
header information (a 4-byte field beginning with an escape
character); if the logical name table entry was created by
the command interpreter, it will «contain this header. 1f
there is a header, adjust the length of the string returned
and the address of the string returned by modifying these
fields in the character string descriptor of the resultant
name string.

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

e Specify the address of this descriptor when you code the
INPUT, OUTPUT, or ERROR arguments to the SCREPRC system
service.

This procedure is illustrated in the example below.

NIOESC:? fDESCRIFTOR FOR RESULT

NLEN? +LLONG 63 SLENGTH OF STRING RETURNED
NADDR?: . L.ONG NAME $ADDRESS OF STRING

NAME ¢ +BLKE 63 SOEVICE NAME STRING RETURNED
INFUT: DESCRIFTOR <SYS$INFUT: sLOGICAL DEVICE NAME

LR

°

$TRNLOG..S LOGNAM=INFUT s RSLLEN=NLENyRSLEUF=NDESC

BSRW ERROR s BRANCH IF ERROR
CMFE NAME » #7X1E sFIRST BYTE AN ESCAFET
EBNEQ 104 sNOy DON‘T ADJUST
SURL. 49y NLEN sSUBRTRACT 4 FROM LENGTH
AL #4yNADDR sALD 4 TO AIDNRESS

104 $CREFRC..S 4+ s INFUT=NDESCyOUTFUT=NIESCy s o »

When the subprocess executes, the 1logical names SYSSINPUT and
SYSSOUTPUT are equated to the device name of the creating process's
logical input device.

The subprocess can then use RMS to open the file for reading and/or
writing. Or, the subprocess can use the Assign I/0 Channel ($ASSIGN)
system service to assign an I/0 channel to this device for
input/output operations by specifying the device name as the logical
name SYSSOUTPUT. For example:

OUTFUT! DESCRIFTOR <SYS$OUTPUT:> #LOGICAL NAME DESCRIFTOR
OUTCHANT JRLKW 1 $ CHANNEL. NUMRER OF OUTFUT DEVICE

*

$AGEIGN.LS DEVUNAM=0UTFUT » CHAN=0UTCHAN

Logical name translation is described in more detail in Section 3.3,
"Logical Name Services." For more information on channel assignment
for I/0 operations, see Section 3.4, "Input/Output Services."

3.5.3.3 Disk and Directory Defaults for Created Processes - When you

use the $CREPRC system service to create a process to execute an.
image, the system locates the image file within the context of the
created process. The created process inherits the current default
device and directory of its creator.

If you explicitly specify .a device and/or directory in the file
specification of the image file or the input, output or error
equivalence names, then those files can be located within the context
of the created process.

There is no way to define an alternative default device and/or
directory at process creation. The created process can, however,
define an equivalence for the logical device SYS$DISK by «calling the
Create Logical Name ($CRELOG) system service. If the process is a
subprocess, you can define an equivalence name in the group logical
name table. The created process can also set its own default
directory by calling the RMS Default Directory control routine. For
details on how to call this routine, see the VAX-11 Record Management
Services Reference Manual.

3-40

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.3.4 Controlling Resources of Created Processes - Ordinarily, when
you create a subprocess, you need only assign it an image to execute
and, optionally, SYS$INPUT, SYSSOUTPUT, and SYS$ERROR devices. The
system provides default values for the process's privileges, resource
guotas, execution modes, and priority. 1In some cases, you may want to
specifically define these values. The arguments to the $CREPRC system
service that control these characteristics are 1listed below, with
considerations for their use. For details, see the argument
descriptions of $CREPRC in Chapter 4.

1. PRVADR - this argument defines the privilege 1list €for the
created process. Normally, ‘any process you create will have
the same privileges that have been assigned to you by the
system manager. In some circumstances, you may need to
create a process that has a special privilege: but you must
have the user privilege SETPRV to provide a subprocess with a
privilege you do not have.

2. QUOTA - this argument defines the quota list for a
subprocess. Since a subprocess receives a portion of its
creator's quotas for timer queue entries, I/0 buffers, and so
on, you may want to control how much of each quota you want

assigned to the subprocess. If you do not code this
‘argument, the system defines default quotas for the
subprocess.

3. STSFLG - the status flag is a set of bits that control some
execution characteristics of the created process, including
resource walt mode and process swap mode.

4. BASPRI - this argument sets the base execution priority for
the created process. If not specified, it defaults to 2. If
you want a subprocess to have a higher priority than its
creator, you must have the user privilege ALTPRI to raise the
priority level.

3.5.3.5 Detached Processes - The creation of a detached process is
primarily a system function; the DETACH privilege controls the
ability to create a detached process. The UIC argument to the SCREPRC
system service defines whether a process is a subprocess or a detached
process; it provides the created process with a user identification
code (UIC). If you omit the UIC argument, the $CREPRC system service
creates a subprocess that executes with your UIC.

3.5.4 Interprocess Control and Communication

Processes can be wholly independent, or they can be cooperative. You
may develop an application that requires the concurrent execution of
many programs. The following sections discuss the things you may
consider when you develop such applications. :

3.5.4.1 Restrictions on Process Creation and Control - There are
three levels of process control privilege:

1. The creator of a subprocess can always issue control
functions for that subprocess.

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL. SERVICES

2. The GROUP privilege is required to 1issue process control
functions for other processes executing in the same group.

3. The WORLD privilege is required to 1issue process control
functions for any process in the system.

Additional privileges are required to perform some specific functions,
for example, to set a process's base priority to a higher level than
that of the requestor.

3.5.4.2 Process Identification - In the examples shown in the
preceding sections, the subprocesses are not identified: once
created, the subprocesses execute according to the image name or the
input stream specified, and are deleted when they complete execution.
In many cases, however, you may want to be able to control the
execution of a subprocess after it has been created. Or, detached
processes that execute in the same group may want to communicate with
one another or issue control functions. 1In these cases, the processes
must be identified.

There are two levels of process identification:

1. Process identification number (PID). The system assigns this
unique 32-bit number to a process when it is created. If you
provide the PIDADR argument to the $CREPRC system service,
the system returns the process identification at the location
specified. You can then use the process identification
number in subsequent process control services.

2. Process name. A process name is a l1- to 15-character text
name string. You can assign a name to a process by coding
the PRCNAM argument when you create it. You can then use
this name to refer to the process in other system service
calls.

For example, you might code a $SCREPRC system service as follows:

NDRION? DESCRIFTOR <ORIONX sFROCESS NAME
ORIONID?)
+LLONG 0 s FROCESS ID RETURNED

*

$CREFRC..S FPRONAM=0RIONsFIDADR=0RIONIDy ...,

The service returns the process identification in the 1longword at
ORIONID. Now, you can .use either the process name (ORION) or the
process identification (ORIONID) to refer to this process 1in other
system service calls. :

A process can set or change its own name with the Set Process Name
($SETPRN) system service. For example, a process can set its name to
CYGNUS as follows:

CYGNUS: DESCRIFTOR <CYGNUS: i NAME DESCRIFTOR

*
+

$SETFRN.S FRCNAM=CYGNUS

3-42

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Most of the process control services accept either the PRCNAM or
PIDADR arguments, or both. The process identification provides a more
efficient means of identifying a process. Since it is only a longword
in length, a system service can examine it more quickly.

When the PIDADR argument is coded and the specified address contains a
0, the services return the process identification. Thus, you can
obtain the process identification for a process by issuing any control
function, as long as you know the process name.

If neither argument is specified, the service is performed for the
calling process. For a summary of the possible combinations of these
arguments and an explanation of how the services interpret them, see
Table 3-3.

Table 3-3
Process Identification

Is A Is A

Process Process ID | Process ID

Name Address Address Resultant Action by Services

Specified? | Specified? | Contains:

no no -— The process identification of
the calling process is used.
The process identification is
not returned.

no yes zero The process identification of
the calling process 1is used
and returned.

no yes process id | The process identification is
used and returned.

yes no - The process name is used. The
process identification is not
returned.

yes yes i zero The process name is wused and
the process identification is
returned.

yes yes process id | The process identification is
used and returned.

Process Naming within Groups: Process names are always qualified by
their group number. The system maintains a table of all process
names, and when a PRCNAM argument is specified in a process control
service, the service searches for the process name specified and for a
match on the group number, and fails if the specified process name
does not have the same group number. This is true even if the calling
process has world control privilege: to execute — a process control

'service for a process that is not a subprocess and not in the caller's

group, the.requesting process must use a process identification.

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Obtaining Information about Processes: The Get Job/Process
Information (SGETJPI) system service allows a process to obtain
information about itself or another process. For complete details

about the SGETJPI system service, see the service description in
Chapter 4.

Techniques for Interprocess Communication: There are several ways
that processes can communicate:

e Common event flag clusters
e Logical name tables
e Mailboxes

e Global sections

Common Event Flag Clusters: Processes executing within the same group
can use common event flag clusters to signal the occurrence or
completion of particular activities. For details on event flags,
event flag clusters, and an example of cooperating processes in the
same group using a common event flag, see Secton 3.1, "Event Flag
Services." ‘

Logical Name Tables: Processes executing in the same group can use
the group logical name table to provide member processes with
equivalence names for logical names. At least one member of the group
must have the user privilege to place names in the group logical name
table. For details on logical names and 1logical name tables, see
Section 3.3, "Logical Name Services."

Mailboxes: Mailboxes can be used as virtual input/output devices to
pass information, messages, or data among processes. For details on
how to create and use mailboxes, with an example of cooperating
processes using a mailbox, see Section 3.4, "Input/Output Services."
Mailboxes may also be used to provide a creating process with a way to
determine when and under what condition a created subprocess was
deleted. See Section 3.5.7.2 for an example of a termination mailbox.

Global Sections: Global sections are disk files containing shareable
code or data. Through the use of memory management services, these
files can be mapped to the virtual address space of more than one
process. _ In the case of a data file, cooperating processes can
synchronize reading and writing the data in physical memory; as the
data is updated, system paging results in the updated data being
written directly -back into the disk file. Global sections are
described in more detail in Section 3.8.6, "Sections."”

3-44

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.5 Process Hibernation and Suspension

There are two ways to temporarily halt the execution of a process:
hibernation, performed by the Hibernate (SHIBER) system service, and
suspension, performed by the Suspend Process ($SUSPND) system service.
The process can continue execution normally only after a corresponding
Wake (SWAKE) system service, if it is hlbernatlng, or after a Resume
Process (SRESUME) system service, if it is suspended.

Process hibernation and suspension are compared in Table 3-4.

Table 3-4
Process Hibernation and Suspension

Hibernation Suspension
Can only hibernate Can suspend self or another
self process, depending on privilege
Reversed by S$SWAKE Reversed by SRESUME system service
system service
Interruptible; can Noninterruptible; cannot receive
receive ASTs ASTs
Can wake self Cannot resume self
Can schedule wakeup Cannot schedule resumption

at an absolute time
or at a fixed time
interval

Hibernate/wake Requires system dynamic memory
complete quickly;
require little
system overhead

3.5.5.1 Process Hibernation - The hibernate/wake mechanism provides
an efficient way to prepare an image for execution and then place it
in a wait state until it is needed. When the wake request is issued,
the image is reactivated with little delay or system overhead.

For example, if you create a subprocess that must execute the same
function repeatedly, but must execute immediately when it is needed,
you could use the SHIBER and $WAKE system services as shown in Figure
3-13. .

.

There is a variation of the $WAKE system ' service that schedules a
wakeup - for a hibernating process at a fixed time or at an elapsed
(delta) time interval. This is the Schedule Wakeup ($SCHDWK) system
service. Using the $SCHDWK service, a process can schedule a wakeup
for itself before issuing a S$HIBER call. For an example of how to use
the $SCHDWK system service, see Section 3.6, "Timer and Time
Conversion Services."

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Process GEMINI

ORION! DESCRIFTOR <ORION:

FASTCOMF?! DESCRIFTOR <COMFUTE.EXE>

+

i SURFROCESS NAME
i IMAGE

"$CREPRC_S FRCNAM=0RION, IMAGE=FASTCOMFs ... FCREATE ORION

RSEW ERROR

© $WAKE_S FRCNAM=0RION
BSEW ERROR

“

$WAKE..S FRONAM=0RION
RSRW ERROR

Process ORIONI

FASTCOMF 2
+WORD 0
1048 $HIRER..S

BRSEW ERROR

*

+

RRW 104

Notes:

" Process GEMINI creates

image name FASTCOMP.

© The image FASTCOMP

SHIBER system service.

the process

initialized,

F CONTINUE

sWAKE ORION

sWAKE ORION AGAIN

FENTRY MASK
i SLEEF

FFERFORM. .

FRACK TO SLEEF

ORION, specifying the

and ORION issues the

G’ At an appropriate time, GEMINI issues a S$WAKE request for

ORION.

ORION continues

execution following the $HIBER

service call. When it finishes its job, ORION loops back to

repeat the $HIBER call and to wait for another wakeup.

Figure 3-13 Process Hibernation

Hibernating processes can be interrupted by Asynchronous System Traps

(ASTs) ,

as 1long as AST delivery is enabled. The process can issue a

SWAKE for itself in the AST service routine, and continue execution

following the execution of the AST service routine.

of ASTs,

For a description
and how to use them, see Section 3.2, "AST (Asynchronous

System Trap) Services."

N

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.5.2 Alternate Methods of Hibernation - Two additional techniques
you can use to cause a process to hibernate are:

° Code the STSFLG argument for the $CREPRC system service,
setting the bit ~that requeSts $CREPRC to place the created
process in a state of hibernation as soon as it is
initialized.

° Specify the /DELAY, /SCHEDULE, or /INTERVAL qualifiers of the
RUN command when you execute the image from the command
stream.

When you use the first method, the creating program image can control,
the system services described here and in Section 3.6, when to wake
the created process.

When you use the RUN command, the qualifiers listed above control when
the process will be awakened.

If the image to be executed does not, itself, call the SHIBER system
service, the 1image 1is placed in a state of hibernation whenever it
issues a RET instruction. Each time it . is reawakened, it begins
executing at its entry point. If the image does call SHIBER, then it
begins executing at either the point following the call to S$HIBER or
at its entry point (if it issues a RET instruction) each time it is
awakened. '

If wakeup requests are scheduled at time intervals, the image can be
terminated with the Delete Process (SDELPRC) or Force Exit (SFORCEX)
system services, or from the command level, with the STOP command.
The $DELPRC and S$FORCEX system services are described later in this
section. The RUN and STOP commands are described in the VAX/VMS
Command Language User's Guide.

These techniques allow you to code programs that can be executed a
single time, on request, or cyclically, depending on a particular set
of circumstances. Note that the program must ensure the integrity of
data areas that are modified during its execution, as well as the
status of opened files.

3.5.5.3 Suspension - Using the Suspend Process (SSUSPND) system
service, a process can place itself or another process into a wait
state similar to hibernation. Suspension, however, is a more
pronounced state of hibernation. A suspended process cannot be
interrupted by ASTs, and can resume execution only after another
process issues a Resume Process (SRESUME) system service for it. 1If
ASTs were queued for the process while it was suspended, they are
delivered when the process resumes execution.

3.5.6 Image Exit

When the 1image executing in = a process completes: normally, the
operating system performs a variety of image rundown functions. If
the image was executed by the command interpreter, image rundown
prepares the process for the execution of another image. If the image

was not executed by the command interpreter -- for example, if it was
executed by a subprocess -- the rundown readies the process for
deletion.

3-47

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

These exit activities are also initiated when an image completes
abnormally, as a result of any of the following:

1. Specific error conditions caused by improper specifications
when a process was created. For example, if an invalid
device name 1is specified for SYS$INPUT, SYSSOUTPUT, or
SYSSERROR 1logical names, or if an invalid or nonexistent
image name is specified, the error condition is noted within
the context of the created process.

2. An exception condition during execution of the image. When
an exception condition occurs, any user-specified condition
handlers receive control to handle the exception. If not, a
system-declared condition handler receives control, and it
initiates exit activities for the image. Condition handling
is described in Section 3.7, "Condition Handling Services."

3. A Force Exit (SFORCEX) system service issued on behalf of the
process by another process.

3.5.6.1 1Image Rundown Activities - The operating system performs
image rundown functions that release system resources that a process
obtained while executing in user mode. These activities are listed
below.

e Exit handlers declared from user mode, if any, are called, and
the exit control blocks are released. (Exit handlers are
described in Section 3.5.6.3.)

e Common event flag clusters are disassociated.

e User mode ASTs that are queued but have not been delivered are
deleted, and ASTs are enabled for user mode.

e I/0 channels are deassigned and any outstanding I/O requests
on the channels are canceled.

® All devices allocated to the process at user mode are
deallocated.

® Timer-scheduled requests, including wakeup requests, are
canceled. :

e Logical names in the process logical name table entered in
user mode are deleted (logical names entered from the command
stream in supervisor mode are not deleted).

e Exception vectors declared in user mode, compatibility mode
handlers, and change mode to user handlers are reset.

® System service failure exception mode is disabled.

e Memory pages occupied by the image are deleted and the
process's working set size limit is readjusted to its default
value.

3.5.6.2 The $Exit System Service - To initiate the rundown activities
described above, the system calls the Exit ($EXIT) system service on
behalf of the process. 1In some cases, a process can call S$EXIT to
terminate the image 1itself, for example, if an unrecoverable error
occurs. This is not, however, recommended programming practice.

3-48

N

‘ S ’

R

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

The SEXIT system service accepts a status code as an argument. If you
use SEXIT to terminate image execution, you can use this status code
argument to pass information about the completion of the image. If an
image does not call $EXIT, the current value in RO is passed as the
status code when the system calls SEXIT.

This status éode is used as follows:

e The command interpreter uses the status code to display an
error message when it receives control following image
rundown.

e If the image has declared an exit handler, the status code is
written in the address specified in the exit control block.

e If the process was created by another process, and the creator
has specified a mailbox to receive a termination message, the
status code is written in the termination message when the
process is deleted.

The use of exit handlers and termination messages requires additional
coding considerations. These considerations are discussed in greater
detail below.

3.5.6.3 Exit Handlers - Exit handlers are routines that can. perform
image-specific cleanup or rundown operations. For example, if an
image uses system memory to buffer data, an exit handler can ensure
that the data 1is not lost when the image exits as the result of an
error condition.

To establish an exit handling routine, you must set up an exit control
block, and specify the address of the control block on the Declare
Exit Handler ($DCLEXH) system service. Exit handlers are called using
standard calling conventions; you can provide arguments to the exit
handler in the exit control block. The first argument in the control
block argument list must specify the address of a longword for the
system to write the status code from SEXIT.

If an image declares more than one exit handler, the control blocks
are linked together on a last-in, first-out basis. After an exit
handler has been called and returns control, the control block is
removed from the list. Exit control blocks can also be removed prior
to image exit with the Cancel Exit Handler ($CANEXH) system service.

Exit handlers can also be declared from system routines executing in

supervisor or executive modes. These exit handlers are also linked
together, and receive control after exit handlers declared from wuser
mode have been executed.

3-49

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Figure 3-14 shows. an example of an exit handling routine.

EXITRLOCK? " FEXIT CONTROL ELOCK
+LLONG 0 sSYSTEM USES THIS FOR FOINTER
+LONG EXITRTN sANDRESS OF EXIT HANDLER
+LLONG 1 sNUMBRER OF ARGS FOR HANDLER
+LONG STATUS FANDRESS TO RECEIVE STATUS CODE
STATUS? RLKL 1 sSTATUS CODE FROM $EXIT
*
FEGASUS! WORD "M<R2sR3> FENTRY MASK FOR FEGASUS

$DOCLEXH_S DESBLN=EXITBLOCN" sDECLARE EXIT HANDLER
RSEW ERROR

*

RET JENDI OF MAIN ROUTINE
EXITRTN? FEXIT HANDLER
e’.UORD MR FENTRY MASK
CMFL STATUS » #55% .NORMAL i NORMAL. EXIT?
REQL. 104 sYESy FINISH
. iNO» CLEAN UF
10%2 RET sFINISHED

Notes:

€@ EXITBLOCK is the exit control block for the exit handler
EXITRTN. The third 1longword 1indicates the number of
arguments to be passed; in this example, only one argument
is passed. This is the address of a longword for the system
to store the return status code; this argument must be
provided in an exit control block.

e’ The $DCLEXH system service call designates the address of the
exit control block, thus declaring EXITRTN as an exit
handler.

© EXITRIN checks the status code. If this is a normal exit,
EXITRTN returns control. Otherwise, it handles the error
condition.

Figure 3-14 Example of an Exit Handler

3.5.6.4 Forced Exit - The Force Exit (S$SFORCEX) system service
provides a way for a process to initiate image rundown for another
process. For example, the following call to $SFORCEX causes the image
executing in the process CYGNUS to exit:

CYGNUS! DESCRIFTOR <CYGNUS: sFROCESS NAME

$FORCEX..S FPRUNAM=CYGNUS

The S$SFORCEX system service uses the AST mechanism to cause the image
to exit. If the process CYGNUS has disabled AST delivery, the image
cannot be forced to exit until CYGNUS reenables the delivery of ASTs.
AST delivery, and how it is disabled and reenabled, is described in
Section 3.2.

3-50

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.7 Process Deletion

Process deletion completely removes a process from the system.
Deletion occurs as a result of any of the following conditions:

e The command stream contains a LOGOUT command or an
end-of-file.

e An image specified by SCREPRC exits.

® A process issues a STOP command or executes an image that
calls the Delete Process (S$SDELPRC) system service.

When the system is called to delete a process as a result of any of
the above conditions, it first locates all subprocesses, searching
hierarchically. Then, beginning with the lowest process 1in the
hierarchy, and completing with the topmost process, each of the
following are performed:

® The image executing in the process 1is run down. System
resources are released, and, if this is a subprocess, quotas
are returned to the creator of the process. The image rundown
that occurs during process deletion 1is the same as that
described in Section 3.5.6.1. When a process 1is deleted,
however, . the rundown releases all system resources, including
those acquired from access modes other than user mode.

® Resource quotas are released to the creating process, if it is
a subprocess.

e If the creating process specified a termination mailbox, a
message indicating that the process is being deleted is sent
to the mailbox. For detached processes created by the system,
the termination message is sent to the system job controller.

e The control region of the process's virtual address space is
deleted. (The control region consists of memory allocated and
used by the system on behalf of the process.)

e All system-maintained information about the process is
deleted.

Figure 3-15 illustrates the flow of events from image exit through
process deletion. :

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Image exit

Any
exit handlers
for user

mode?

Call them, In LIFO order,
using argument list in exit
control block

process using
the command
interpreter?

Call the exit handler
declared by the
command interpreter®

\

Call the Delete Process
($DELPRC) system service
to delete the process

Did
creator specify
a termination
mailbox?

Return to command
interpreter to execute
the next image

Send a termination message
to the mailbox specified by
the process’s creator

\

*This exit handler is declared
from supervisor mode and is
located during the normal
search for exit handlers.

Deletion
complete

Figure 3-15 Image Exit and Process Deletion

S

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.7.1 The Delete Process System Service — A process can delete
itself- or another process at any time, depending on the restrictions
outlined in Section 3.5.4.1. The Delete Process ($SDELPRC) system
service deletes a process. For example, if a process has created a
subprocess named CYGNUS, it can delete CYGNUS as shown below:

CYGNUS?! DESCRIFTOR <CYGNUS:

+
$NELFRC.8 FPRCNAM=CYGNUS

Since a subprocess is automatically deleted when the 1image it 1is
executing terminates (or when the command stream for the command
interpreter reaches end-of-file), you do not normally need to issue
the S$DELPRC system service explicitly.

As an alternative to deleting a process, you can use the Force Exit
(SFORCEX) system service to force the exit of the image executing in a
process. If the $FORCEX system service is used, any exit handlers
that are declared for the image are executed during the image rundown.
Thus, if the process is using the command interpreter, it 1is not
deleted, but can run another image. Moreover, since the $FORCEX
system service uses the AST mechanism, the exit cannot be performed if
the process being forced to exit has disabled the delivery of ASTs.

3.5.7.2 Termination Mailboxes - A termination mailbox provides a
process with a way of determining when, and under what conditions, a
process that it has created is being deleted. The Create Process
(SCREPRC) system service accepts the unit number of a mailbox as an
argument. When the created process is deleted, the mailbox receives a
termination message. ’

The first word of the termination message contains the symbolic
constant, MSG$ DELPROC, which indicates that it 1is a termination
message. The remainder of the message contains system accounting
information used by the job controller, and is in fact identical to
the first part of the accounting record sent to the system accounting
log file. The complete format of the termination message is provided
with the description of the SCREPRC system service in Chapter 4.

The creating process can, if necessary, determine the process
identification of the process being deleted from the I/O status block
posted when the message is received in the mailbox. The second
longword of the IOSB contains the process identification of the
process that is being deleted.

Figure 3-16 illustrates a complete sequence of process creation, with
a termination mailbox. The Create Mailbox and Assign Channel
(SCREMBX) and Queue I/0 Request ($QIO) system services are described
in- greater detail in Section 3.4.

EXCHAN?
+ BLKW
EXITRUF
+LLONG
+L.ONG
REUF ¢ + BLKE
ENDRUF ?

EXITMSG: . BLKER
MEXIOSE? . BLKW
MELEN: +EBLKW
MEFID?: JERLKL
LYRAFID?
+LLONG

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

1

ENDEUF-BRUF
BRUF
DIBSK..LENGTH

ACCHK._TERMLEN
1
1
1

0

LYREXE? DESCRIFTOR <LYRAJEXEX

+

.

sGET CHANNEL NO. OF MAILROX
sOESCRIFPTOR FOR MAILEOX INFO
#LLENGTH OF RUFFER

s ADDRESS OF RUFFER

BUFFER

s BUFFER FOR MAILROX MESSAGE

s QUANWORD I/0 STATUS RLOCK
sLENGTH OF I/0

$RECEIVES FID OF FROCESS DELETED

sGET PID OF SUBFROCESS
sNAME OF IMAGE FOR SUEBFROCESS

‘.$CRENBX-S CHAN=EXCHANy MAXMSG=#120y FROMSK=%0» RUFQUO=%240

BSEW

ERROR

§CREATE MAILROX

€’$GETCHNMS CHAN=EXCHANy FRIBUF=EXITRUF

ESEW

ERROR

$GET MAILROX INFO 7)

€>$CREPRC_S IMAGE=LYREXE :FIDADR=LYRAFID: -

LAC I A

iCREATE SURFROCESS

MEXUNT=BRUF+DIR$W_UNIT FSFECIFY TERMINATION MAILEOX

BSRW ERROR
"$GIO-S CHAN=EXCHANs FUNC=#I10% _READNVEI.Ky -
FQI0 TO MAILROX
ASTANR=EXITAST» IOSE=MRXIOSEsF1=EXITMSGs F2=ACC$K_TERMLEN
ESEW ERROR
. FCONTINUE EXECUTION ~
:)
RET :
EXITAST? $AST ROUTINE FOR TERMINATION MSG
+WORD 0 JENTRY MASK
CMFUW MEXTOSEy #5546 NORMAL #I/0 SUCCESSFULT?
ENEQ 204 FRRANCH IF NOT
CMFW EXITMSG+ACCHW _MSGTYF » #MSG$..DELFROC I8 IT A TERMINATION MSG?
ENEQ® 20% $NO» SOME THING ELSE
CMPL LYRAFIDyMEFID +I8 IT LYRAT
ENEQR 204 $NOy SOMERODY ELSE : -
CMFL EXITMSGHACCHL FINALSTS » #5584 NORMAL. FDELETED NORMALLYT >
REQL 10¢ $YESy RETURN
. N0y RESFOND TO ERROR IN LYRA
1082 RET $AST ROUTINE FINISHED
20%3 ‘ $HANDLE ALL OTHER CONDITIONS
Figure 3-16 Using a Termination Mailbox

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Notes on Figure 3-16:

The Create Mailbox and Assign Channel (SCREMBX) system
service creates the mailbox, and returns the channel number
at EXCHAN.

The Get I/O Channel Information (SGETCHN) system service
returns information about the mailbox. The information
returned in the buffer can be referred to by the symbolic
offsets defined in the S$DIBDEF macro.

The Create Process (SCREPRC) system service creates a process
to execute the image LYRA.EXE, and returns the process
identification at LYRAPID. The MBXUNT argument refers to the
unit number of the mailbox, obtained from the buffer BBUF by
using the symbolic offset DIBSW_UNIT.

The Queue I/O Request queues a read reguest to the mailbox,
specifying an AST service routine to receive control when the
mailbox receives a message and the address of a buffer to
receive the message. The information in the message can be
accessed by the symbolic offsets defined in the S$ACCDEF
macro. The process continues executing.

When a message is received in the mailbox, the AST service
routine, EXITAST, receives control. Since this mailbox can
be used for other interprocess communication, the AST routine
checks: 1) for successful completion of the I/O operation by
examining the first word in the IOSB, 2) that the message
received 1is a termination message by examining the message
type field 1in the termination message at the offset
ACCSW MSGTYPE, 3) the process identification of the process
that has been deleted by examining the second longword of the
I0SB, and 4) the completion status of the process by
examining the status field in the termination message at the
offset ACCSL_FINALSTS.

In this example, the AST service routine performs special
action when the subprocess is deleted. All other messages oOr
error conditions cause a branch to the label 20S.

HOW TO USE SYSTEM SERVICES

3.6 TIMER AND TIME CONVERSION SERVICES

Many applications require the scheduling of program activities based
on clock time. In VAX/VMS, an 1image can schedule events for a
specific time of day, or after a specified time interval. Timer
services:

° Schedule the setting of an event flag or the gueueing of an
asynchronous system trap (AST) for the current process, and
cancel a pending request that has not yet been honored.

° Schedule a wakeup request for a hibernating process, and
cancel a pending wakeup request that has not yet been
honored.

The timer services require you to specify the time in a unigue 64-bit
format. Time conversion services:

° Obtain the current date and time in an ASCII string or in
system format

° Convert an ASCII string into the system time format
° Convert a system time value into an ASCII string
° Convert the time from system format to integer values

This section describes the system time format and the services that
use it, with examples of scheduling program activities using the timer
services. .

3.6.1 The System Time Format

VAX/VMS maintains the current date and time (using a 24-hour clock) in
64-bit format. The time value is a binary number in 100-nanosecond
units offset from the system base date and time, which is 00:00
o'clock, November 17, 1858.1 All time values passed to system services
must also be in 64-bit format. A time value can be expressed as:

® An absolute time which is a specific date and time of" day.
Absolute times are always positive values.

® A delta time which is a future offset (number of hours,
minutes, seconds, and so on) from the current time. Delta
times are always expressed as negative values.

"You can also specify the address of a time value as 0; in this case
the system will always supply the current date and time by default.

3.6.2 The Current Date and Time

The Convert Binary Time to ASCII String (SASCTIM) system service
converts a time in system format to an ASCII string and returns the
string in a 24-byte buffer. If you want to obtain the current time in
ASCII, code the $ASCTIM system service as follows:

1 rThis is the Smithsonian base date and time for the astronomical
calendar.

N

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

ATIMENOW? fDESCRIFTOR FOR ASCII TIME
+L.ONG 20%-10% FLENGTH OF RUFFER
+LONG 10% $ALDRESS OF BUFFER

1043 + BLKE 24 $24 BYTES RETURNED

2043

*

*

$ASCTIM.S TIMBUF=ATIMENOW,- FGET CURRENT TIME
TIMLEN=ATIMENOW

The string returned by the service in the buffer ATIMENOW has the
format:

dd-mmm-yyyy hh:mm:ss.cc

where dd is the day of the month, mmm is the month (a 3-character
alphabetic abbreviation), yyyy is the year, and hh:mm:ss.cc is the
time in hours, minutes, seconds, and hundredths of seconds. The
TIMLEN argument requests the system to place the length of the string
returned in the first word of the descriptor.

The current time can also be obtained in system format with the Get
Time ($GETTIM) system service, which places the time in a quadword
buffer. For example:

TIME? + BLKQ 1 s RUFFER FOR TIME

$GETTIM..S TIMADR=TIME $GET TIME

This call to SGETTIM returns the current date and time system format
in the quadword buffer TIME. -

3.6.3 Obtaining an Absolute Time in System Format

The converse of the S$ASCTIM system service is the Convert ASCII String
to Binary Time ($SBINTIM) system service. You provide the service with
the time in the ASCII format shown above, and the service converts the
string to a time value 1in 64-bit format. You can then use this
returned value as input to a timer scheduling service.

When you code the ASCII string buffer, you can omit any of the fields,
and the service uses the current date or time value for the field.
Thus, if you want a timer request to be date independent, you could
format the input buffer for the $BINTIM service as shown below. The
two hyphens that are normally embedded 1in the date field must be
included; at. least one blank must precede the time field. .

ANOON? nESCRiPTDR G 12300300, 00 FASCII 12 NOON
EBNOON: JELKQR 1 $RUFFER FOR RINARY 12
: §NOON .

.

+

$HINTIM.S TIMBUF=ANOON,TIMADR=ENOON $CONVERT TIME

When the S$BINTIM service completes, a 64-bit time value representing
"noon today" is returned in the quadword at BNOON.

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

3.6.4 Obtaining a Delta Time in System Format
The $BINTIM system service also converts ASCII strings to delta time
values to be wused as input to timer services. The buffer for delta
time ASCII strings has the format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0
if you are coding a "today" delta time.

The following example shows how to use the $BINTIM service to obtain a
delta time in system format.

ATENMIN? DESCRIFTOR <0 00:10300,00% FASCITI TEN MINUTES
RTENMIN?
+BLKQ 1 sBUFFER FOR RINARY TEN
FMINUTES

*

*

$BINTIM..S TIMRBUF=ATENMINy TIMADR=ETENMIN $CONVERT TIME

You can also specify approximate delta time values at assembly time,
using two MACRO .LONG directives to represent a time value in terms of
l00-nanosecond units. The arithmetic is based on the formula:

1 second = 10 million * 100 nanoseconds

For example, the following statement defines a delta time value of 5
seconds:

FIVESEC? LJLONG ~10%1000%1000%%5,~1 jFIVE SECONDS

The value 10 million is expressed as 10*1000%1000 for readability.
Note that the delta time value is negative.

If you use this notation, however, you are 1limited to the maximum
number of 1l00-nanosecond units that can be expressed in a longword.
. In terms of time values, this is somewhat more than 7 minutes.

3.6.5 Timer Requests

Timer requests made with the Set Timer ($SETIMR) system service are
queued, that 1is, they are ordered for processing according to their
expiration times. The TQELM quota controls the number of entries a
process can have pending in this timer queue.

When you code the $SETIMR system service, you can specify either an
absolute time or a delta time value. Depending on how you want the
request processed, you can specify either or both of the following:

) The number of an event flag to be set when the time expires.
If you do not specify an event flag, the system sets event
flag 0.

° The address of an AST service routine to be executed when the
time expires.

Optionally, you can specify a request identification for the timer

request. You can wuse this identification to cancel the request, if
necessary. The request identification is passed to the AST service

3-58

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

routine, 1if one is specified, as the AST parameter so the AST service
routine can identify the timer request.

Figure 3-17 shows examples of timer requests using event flags and
ASTs. Event flags and event flag services are described in more
detail in Section 3.1, "Event Flag Services." ASTs are described 1in
more detail in Section 3.2, "AST (Asynchronous System Trap) Services."

Example 1l: Setting an Event Flag

N

WAITIME?
+L.ONG =10%1000%1000%30y-1 30 SECOND WAIT TIME
"$SETIMR_S EFN=%4yOAYTIM=WAITIME $SET TIMER
ERSRW ERROR
¢’$NAITFR_S EFN=%4 FWAIT 30 SECONDS

RSEW ERROR
+

*

Notes on Example 1:

@ The call to $SETIMR requests that event flag 4 be set in 30
seconds (expressed in the gquadword WAITIME).

t’ The Wait for Single Event Flag (SWAITFR) system service
places the process in a wait state until the event flag is
set. When the timer expires, the flag is set and the process
continues execution. ’

Figure 3-17 Timer Requests

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

Example 2: Using an AST Service Routine

ANOON: DESCRIFTOR «-- 12:00:00.00x FASCII NOON
BNOON? +RBLKE 1 FBEINARY NOON

+

*

"$BINTIMMS TIMBUF=ANOON» TIMADR=ENOON $CONVERT TIME
ESEW ERROR :

¢,$8ETIMRWS LAYTIM=ENOON» ASTADR=ASTSERVyREQIDT=%12
RSRW ERROR

*

ASTSERV?
+WORD 0 FENTRY MASK
CMFL #12r4(AF) s CHECK AST FARAMETER
REQI. 104 $GO TO NOON ROUTINE
1042 . FSERVICE NOON REQUEST
RET

Notes on Example 2:

" The call to S$BINTIM converts the ASCII string representing
12:00 noon to system format. The value returned in BNOON is
used as input to the $SETIMR system service.

© The AST routine specified in the $SETIMR request will be
called when the timer expires, that is, at 12:00 noon. The
REQIDT argument identifies the timer request. The process

continues execution; when the timer expires, it |is
interrupted by the delivery of the AST. Note that 1if the
current time of day is past noon, the timer expires
immediately.

G’ This AST service routine checks the parameter passed by the
REQIDT argument and determines, in this example, that it must
service the 12:00 noon timer request. When the AST service
routine completes, the process continues execution at the
point of interruption.

Figure 3-17 (Cont.) Timer Requests

3.6.5.1 Canceling Timer Requests - The Cancel Timer Request ($CANTIM)
system service cancels timer requests that have not yet been
processed. The entries are removed from the timer queue.
Cancellation is based on the request identification given in the timer
request. For example, to cancel the request illustrated in Example 2
of Figure 3-17, you would code:

$CANTIM..S REQINT=#12
If you assign the same identification to more than one timer request,

all requests with that identification are canceled. If you do not
specify the REQIDT argument, all your requests are canceled.

/
et

Y

R

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

3.6.6 Scheduled Wakeups

Figure 3-17 showea a process placing itself in a wait state for a
period of time wusing the $SETIMR and $WAITFR services. Another way
for a process to make itself inactive is by hibernating. A process
hibernates by issuing the Hibernate (SHIBER) system service;
hibernation is reversed by a wakeup request, which can be effected
immediately with the $WAKE system service, or scheduled with the
Schedule Wakeup ($SCHDWK) system service.

The following example shows a process scheduling a wakeup for itself
prior to hibernating:

ATENSECIDESCRIFTOR <0 00:00:10.,00> 10 SECOND WAIT TIME
BTENSEC?
« BLKQ 1 sRINARY TEN SECONDS

+

$BINT[M S TIMRUF=ATENSECTIMALIR= BTENSFC s CONVERT TIME
$SCHIWK..S DAYTIM=RTENSEC sSCHEDULE WAKE
$HIRER_S sSLEEF TEN SECONDS

Hibernation and wakeup are described in more detail 1in Section 3.5,
"Process Control Services." Note that a suitably privileged process
can wake or schedule a wakeup for another process; thus, cooperating
processes <can synchronize activity wusing hibernation and scheduled
wakeups. Moreover, when you code a $SCHDWK system service, you can
specify that the wakeup request be repeated at fixed time intervals.

3.6.6.1 Canceling Scheduled Wakeups - Scheduled wakeup requests that
are pending but have not yet been processed can be canceled w1th the
Cancel Wakeup ($SCANWAK) system service.

The following example shows the scheduling of wakeup requests for a
process, CYGNUS, and the subsequent cancellation of the wakeups. The
$SCHDWK system service in this example specifies a delta time of one
minute and an interval time of one minute; the wakeup is repeated
every minute until the requests are canceled.

CYGNUS?! DESCRIFTOR =CYGNUS: sFROCESS NAME
INTERVAL ¢ SDELTA TIME
+LLONG =1OX1000X1000%60y~1 sONE MINUTE

*

$SCHIOWK..S FRCNAM=CYGNUSyDAYTIM=INTERVAL y REFTIM=INTERVAL

¢

$CANWAK..S FRCNAM=CYGNUS sCANCEL WAKEUFS

3.6.7 Numeric and ASCII Time

The Convert Binary Time to Numeric Time ($NUMTIM) system service
converts a time in the system format into binary integer values. .The
service returns each of the components of the time (year, month, day,
hour, and so on) into a separate word.of a seven-word buffer The
SNUMTIM system service and the format of the information returned are
described in Chapter 4.

3-61

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

When you need the time formatted into ASCII for inclusion in an output
string, you can use the $ASCTIM system service. The $ASCTIM service
accepts as an argument the address of a quadword that contains the
time in system format and returns the date and time in ASCII format.

If you want to include the date and time in a character string that
contains additional data, you can format the output string with the
Formatted ASCII Output ($FAO) system service. The S$FAO system service
converts binary values to ASCII representations, and substitutes the
results in character strings according to directives supplied 1in an
input control string. Among these directives are !%T and !%D, which
convert a quadword time value to an ASCII string and substitute the
result in’ an output string. For examples of how to do this, see the
discussion of SFAO in Chapter 4.

e

g

HOW TO USE SYSTEM SERVICES

3.7 CONDITION HANDLING SERVICES

Exceptions are hardware- or software-detected conditions that
interrupt the execution of an image. Exceptions are caused by such
things as arithmetic overflow or underflow conditions, or reserved
opcode or operand faults.

Condition handlers are procedures that are given control when an
exception condition occurs. If you determine that a program needs to
be informed of particular exception conditions so that it can perform
corrective action, you may want to code a condition handling routine.
This routine, or condition handler, then receives control ~when any
type of exception occurs.

If an exception occurs, and no condition handler exists, the default
condition handler established by the command interpreter is given
control. This handler issues a descriptive message and performs an
exit on behalf of the image that incurred the exception.

This section describes how the condition handling mechanism in VAX/VMS
works, and explains how to write a condition handler.

3.7.1 Types of Exception

Exception conditions can be generated by:
e Hardware
e Software
e System service failures

Hardware-generated exceptions always result in conditions that require
special action if program execution 1is to continue. A list of
hardware exceptions is given in Table 3-5.

Some software routines can generate exception conditions; these may
be warning or error conditions. (These software conditions are
documented with the descriptions of any software that cause them.)

Software exceptions can also occur when an error or severe error
status is returned from a call to a system service. You can choose to
handle error returns from system services by wusing the condition
handling mechanism rather than other error checking methods. If you
want exceptions generated by service failures, you must enable system
service failure exception mode with the Set System Service Failure
Mode (SSETSFM) system service. For example:

S$SETSFM..S ENRFLG=#1

System service failure exception mode is initially disabled, and may

"be enabled or disabled at any time during the execution of an image.

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.1.1 Change Mode and Compatibility Mode Handlers - There are two
types of hardware exception that can be handled in a special way,
bypassing the normal condition handling mechanism described in this
chapter. These are:

e Traps caused by change mode to wuser or change mode to
supervisor instructions

e Compatibility mode faults

You can use the Declare Change Mode or Compatibility Mode Handler
(SDCLCMH) system service to establish procedures to receive control
when one of these conditions occurs. The $DCLCMH system service is
described in Chapter 4.

3.7.2 How to Specify Condition Handlers

You can establish condition handlers to receive control in the event
of an exception in two ways:

1. By specifying the address of the entry mask of a condition
handler in the first longword of a procedure call frame

2. By establishing exception vectors with . the Set Exception
Vector (SSETEXV) system service

The first of these methods 1is the most common way to specify a
condition handler for a particular image. It is also the most
efficient way in terms of declaration. You only have to use a single
move address instruction to place the address of the condition handler

in the longword pointed to by the current frame pointer (FP). For
example:
MOVAL. HANDLER s (FF)

Each procedure on the call stack can declare a condition handler.

The $SETEXV system service allows you to specify addresses for a
primary exception vector, a secondary exception vector, and a last
chance exception vector. Vectors may be specified for each access
mode. The primary exception vector is reserved for the debugger.

An address of 0, in the first longword of a procedure call frame, or

in an exception vector, indicates that no condition handler exists for
the respective vector or call frame.

3.7.3 The Exception Dispatcher

When an exception condition occurs, control is passed to the operating
system's exception dispatching routine. The exception dispatcher

3-64

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

searches for a condition handling routine using the following search
order: '

1. The primary exception vector for the access mode at which the
program was executing when the exception occurred.

2. The secondary exception vector for the access mode at which
the program was executing when the exception occurred.

3. The condition handler address specified in the procedure call
stack of the access mode at which the program was executing
when the exception occurred. Call frames on the stack are
scanned backwards, using the saved frame pointer in each call
frame to refer to the previous call frame.

4. The last chance exception vector for the access mode at which
the program was executing when the exception occurred.

The search is terminated when the dispatcher finds a condition
handler. If the dispatcher cannot find a user-specified condition
handler, it calls the default condition handler established by the
command interpreter, if the 1image was initiated by the command
interpreter. The default handler 1issues a message and either
continues program execution or performs an exit on behalf of the
process, depending on whether the condition was a warning or an error
condition, respectively.

The search can also be terminated when the dispatcher detects a saved
frame pointer 'containing a 0 (that 1is, it reaches the end of the
stack), or when an access violation occurs. In these cases, the
system performs an exit for the process, with the return status code
SS$_NOHANDLER indicating "absence of condition handler" (for a 0 frame
pointer) or SS$_ACCVIO indicating "bad -stack" (for an access
violation).

Figure 3-18 illustrates the exception dispatcher's search of the callA
stack for an exception handler.

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

0
FP
Condition
Procedure Oceurs
C
/
0
FP
Procedure
B
A
HANDLERA |
FP
] Condition
Procedure Handler Found
A

Figure 3-18 Search of Stack for Condition Handler

Notes on Figure 3-18:

1.

The illustration of the call stack indicates the calling
sequence: Procedure A called Procedure B, and Procedure B
called Procedure C. Procedure A established a condition
handler.

An exception condition occurs while Procedure C is executing.
The exception dispatcher searches for a condition handler.

After checking for a condition handler declared 1in the
exception vectors (assume that none has been specified for
this process), the dispatcher looks at the first longword of
Procedure C's call frame. A value of 0 indicates that no
condition handler has been specified. The dispatcher locates
the call frame for Procedure B by using the frame pointer
(FP) in Procedure C's call frame. Again, it finds no
condition handler, and locates Procedure A's call frame.

The dispatcher locates and gives control to HANDLERA.

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.4 The Argument List Passed to a Condition Handler

When the dispatcher finds a condition handler, it passes control to it
using a CALLG instruction. The argument list passed to the condition
handler is constructed on the stack and consists of the addresses of
two argument arrays, as illustrated in Figure 3-19; these arguments
are described in detail in Sections 3.7.4.1 and 3.7.4.2.

Signal Array

condition name

first signal argument

Argument List additional arguments for 1

_ condition handler, ~
2 1 if any
address of signal array PC
address of mechanism array PSL

Mechanism Array

establisher frame

depth

RO

R1

You can define symbolic names to refer to these arguments using the
$CHFDEF macro instruction. The symbolic names are:

Symbolic Offset Value
CHF$L__SIGARGLST Address of signal array
CHF$L_MCHARGLST Address of mechanism array
CHF$L_SIG_ARGS Number of signal arguments
CHF$L _SIG_NAME Condition name
CHF$L_SIG_ARG1 First signal-specific argument
CHF$L_MCH_ARGS Number of mechanism arguments
CHF$L_MCH_FRAME Establisher frame address
CHF$L_MCH_DEPTH Frame depth of establisher
CHF$L_MCH_SAVRO Saved register 0
CHF$L_MCH_SAVR1 Saved register 1

Figure 3-19 Argument List and Arrays Passed to Condition Handler

3-67

3.7.4.1

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

Signal Array Arguments - The signal array contains values

describing the exception condition.
These are:

1.

3.7.4.2
context

1.

Condition name -- the symbolic value assigned to the specific
exception condition. The possible conditions, and their
symbolic definitions, are listed in Table 3-5.

Additional arguments -- specific information relating to the
condition. Table 3-5 also shows the additional arguments
provided with each exception condition.

PC -- the program counter at the time of the exception.
Depending on the type of exception (fault or trap), this can
be the address of the ihnstruction that caused the exception,
or the following instruction, respectively.

PSL -- the processor status longword at the time of the
exception.

Mechanism Array Arguments - The mechanism array describes the
in which the condition occurred. The arguments supplied are:

Establisher frame -- the frame pointer (FP) register image of
the call frame that established the condition handler. This
is the address of the 1longword containing the condition
handler address. For example, if the call stack is as shown
in Figure 3-18, this argument points to the call frame for
Procedure A.

This value can be used to display local variables in the
procedure that established the <condition handler, if the
variables are at known offsets from the FP of the procedure.

Depth -- the frame number of the procedure that established
the condition handler, relative to the frame of the procedure
that incurred the exception. The depth 1is determined as
follows:

Depth Meaning

-3 Condition handler was established in the 1last
chance exception vector

-2 Condition handler was established in the primary
exception vector

-1 Condition handler was established in the secondary
exception vector

0 Condition handler was established by the frame
that was active when the exception occurred

1 Condition handler was established by the caller of

' the frame that was active when the exception
occurred

2 Condition handler was established by the caller of

the caller of the frame that was active when the
exception occurred

.o and so on.

S’

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

For example, if the call stack is as shown in Figure 3-18,
the depth argument passed to HANDLERA would have a value of
2.

The condition handler can wuse this argument to determine
whether it wants to handle the condition. For example, the
handler may not want to handle the condition if the condition
did not occur in the establisher frame.

3. RO -- the contents of register 0 when the exception condition
occurred.

4. Rl -- the contents of register 1 when the exception condition
occurred.

3.7.5 Courses of Action for the Condition Handler

After the condition handling routine determines the nature of the
exception, it can take one of the following courses of action:

1l. Continue

- The condition handler may or may not be able to fix the
problem but the program can continue execution. The handler
places the return status value SS$ CONTINUE in RO and 1issues
a RET instruction to return control to the dispatcher. The
exception dispatcher returns control to the procedure that
incurred the exception, at the instruction that caused the
exception. If the exception was a fault, the instruction
that caused it is reexecuted; if the exception was a trap,
control is returned at the instruction following the one that
caused 1it. (In the case of a trap, the instruction causing
the trap can sometimes be re-executed by subtracting the
length of the instruction from the PC in the signal array.)

2. Resignal

The handler cannot fix the problem, or this condition is one
that it does not handle. It places the return status value
SS$_RESIGNAL in RO and issues a RET instruction to return
control to the exception dispatcher. The dispatcher resumes
its search for a condition handler, using the search order
described above. If it finds another condition handler, it
passes control to that routine.

3. Unwind

The condition handler cannot fix the problem, and execution
cannot continue using the current flow. The handler issues
the Unwind Call Stack ($UNWIND) system service to unwind the
call stack. Call frames may then be removed from the stack
and the flow of execution modified, depending on the arguments
to the $UNWIND service.

Examples of these three situations are shown 1in the following
sections.

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

Table 3-5
Summary of Exception Conditions

Condition
Name/Type Explanation Additional Arguments
SS$_ACCVIO Access violation 1. Reason for access violation. This is a
(Fault) mask with the format:
Bit 0 = type of access violation
0 = page table entry protection
code did not permit intended
access
1 = POLR, PILR, or SLR length
violation
Bit 1 = page table entry reference
0 = specified wvirtual address
not accessible
1 = associated page table entry
not accessible
Bit 2 = intended access
0 = read
1 = modify
2. Virtual address to which access was
attempted
SS$_ARTRES Reserved arithmetic trap None
(Trap)
SS$_ASTFLT Stack invalid during 1. Stack pointer value when fault occurred
(Fault) attempt to deliver an 2. AST parameter of failed AST
AST 3. Program counter (PC) at AST delivery
interrupt
4., Processor status longword (PSL) at AST
delivery interrupt
5. Program counter (PC) to which AST would
have been deliveredl
6. Processor status longword (PSL) to which
AST would have been delivered
SS$_BREAK Breakpoint instruction None.
(Fault) encountered
SS$_CMODSUPR Change mode to supervisor Change mode code. The possible values are
(Trap) instruction encountered? ~32768 through 32767.
55$_CMODUSER Change mode to user Change mode code. The possible values are
(Trap) instruction encountered -32768 through 32767.

1 The PC and PSL normally included in the signal array are not included in this argument list.
The stack pointer of the access mode receiving .this exception is reset to its initial value.

2 If a change mode handler has been declared for user or supervisor modes with the Declare
Change Mode or Compatibility Mode Handler ($DCLCMH) system service, that routine receives
control when the associated trap occurs.

pa—

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

Table 3-5 (Cont.)
Summary of Exception Conditions

Condition
Name/Type Explanation Additional Arguments
SS$_COMPAT Compatibility mode Type of compatibility exception. The possible
(Fault) exception. This exception values are:
condition can only occur
when executing in 0 = Reserved instruction execution
compatibility mode. 1 = BPT instruction executed
2 = IOT instruction executed
3 = EMT instruction executed
4 = TRAP instruction executed
5 = Illegal instruction executed
6 = 0dd address fault
7 = TBIT trap
SS$_DECOVF Decimal overflow None
(Trap)
SS$_FLTDIV Floating/decimal divide by zero None
(Trap)
SS$_FLTOVF Floating overflow None
(Trap)
SS$_FLTUND Floating underflow None
(Trap)
SS$_INTDIV Integer divide by zero None
(Trap)
SS$_INTOVF Integer overflow None
(Trap)
SS$_OPCCUS Opcode reserved to customer None
(Fault) fault
SS$_OPCDEC Opcode reserved to Digital None
(Fault) fault
SS$_PAGRDERR Read error occurred during 1. Translation not valid reason. This is
(Fault) an attempt to read a faulted a mask with the format:
page from disk
Bit 0 = 0
Bit 1 = page table entry reference
0 = specified virtual address
not valid
1 = associated page table entry
not valid
Bit 2 = intended access
0 = read
1 = modify
SS$_RADRMOD Attempt to use a reserved None
(Fault) addressing mode
SS$_ROPRAND Attempt to use a reserved None
(Fault) operand
SS$_SSFAIL System service failure (when Status return from system service (RO)
(Fault) system service failure (The same.value is in RO of the
exception mode is enabled) mechanism array)
SS$_SUBRNG Subscript range trap None
SS$_TBIT Trace bit is pending following None
(Fault) an instruction :

3 If a compatibility mode handler has been declared with the Declare Change Mode or
Compatibility Mode Handler ($DCLCMH) system service, that routine receives control when this
fault occurs.

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.6 Example of Condition Handling Routines Continuing and Resignaling

Figure 3-20 shows two procedures, A and B, that have declared
condition handlers. The notes describe the sequence of events that
would occur if a call to a system service failed during the execution
of Procedure B.

FGMAL: JWORD 0 FENTRY MASK
MOVAL HANDLERAy(FP)" sDECLARE CONDITION
sHANDLER
$SETSFM..S ENBFLG=#1 sENARLE SSFAIL
JEXCEFTIONS
CALLG ARGLIST:PGMB‘? sCALL FROCEDURE E
HANDLERA !
+WORD “MuR2: FENTRY MASK
+OF HANDLERA
MOVL CHF $L...SIGARGLST (AF) s R4 $GET ADDR OF SIGNAL
§ARGS
CMFL #G5S$_SSFALLyCHF$L_SIG.NAME(R4) $SYSTEM SERVICE
sFAILURET
ENEQ 104 iNO - GO RESIGNAL
. sHANDLE SSFAIL
. FEXCEFTION
MOVZUWL. #SS$_CONTINUESRO FSIGNAL CONTINUE
RET FRETURN TO EXCEFTION
FLISFATCHER
104 MOVZUWL. #55% _RESIGNAL RO §SIGNAL RESIGNAL
RET FRETURN TO DISFATCHER
FGME: Y JWORD “MER2yR3s R4 FENTRY MASK
MOVAL. HﬁNnLERB;(FP)" sODECLARE CONDITION
FHANDLER
¢ <-— Sustem service failure ocwurs"
o '©
HANDLERE ¢
+WORD “MoR2yR3IvR4 FENTRY MASK
#0F HANDLERE
MOVL. CHF $L...SIGARGLST(AF) yR4 $GET ADDR OF SIGNAL.
$ARGS
CMFL. #8554 BREAK s CHF $L..5IG..NAME (R4) F BREAKFOINT FAULT?
ENEQ 10% #NO» GO RESIGNAL
. FYESy HANDLE EXCEFTION
MOVZUWL #SS4. . CONTINUESRO - #SIGNAL CONTINUE
RET FRETURN TO DISFATCHER
104 MOVZUWL. #SS$MRESIGNALvRO‘, s SIGNAL RESIGNAL
RET : FRETURN TO DISFATCHER

Figure 3-20 Example of Condition Handling Routines

Ny .

S’

"

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

Notes on Figure 3-20:

Procedure A executes and establishes condition handler

‘HANDLERA. HANDLERA is set up to respond to exceptions caused

by failures in system service calls.
During its execution, Procedure A calls Procedure B.

Procedure B establishes condition handler HANDLERB. HANDLERB
is set up to respond to breakpoint faults.

While Procedure B is executing, an exception condition occurs
caused by a system service failure.

The exception dispatcher searches the exception vectors for a
condition handler (assume there are none defined), and then
searches the call stack. HANDLERB is called with the
condition SS$_SSFAIL.

Since HANDLERB only handles breakpoint faults, it places the
return value SS$_RESIGNAL in RO and returns control to the
exception dispatcher.

* The exception dispatcher resumes its search for a condition

handler and calls HANDLERA.

HANDLERA handles the system service failure exception,
corrects the condition, and the return value SS$_CONTINUE in
RO, and returns control to the exception dispatcher.

The dispatcher returns control to Procedure B, and execution
of Procedure B resumes at the instruction following the
system service failure.

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.7 Unwinding the Call Stack

The third course of action a condition handler can take is to unwind

the procedure call stack. The unwind operation is complex, and should
only be used when control must be restored to an earlier procedure 1in
the calling sequence. Moreover, wuse of the SUNWIND system service
requires the calling condition handler to be aware of the calling
sequence and of the exact point to which control is to return.

The S$UNWIND system service accepts two optional arguments:

1. The depth to which the unwind is to occur. 1If the depth 1is
1, the call stack is unwound to the caller of the procedure
that caused the exception condition. If the depth is 2, the
unwind is to the caller's caller, and so on.

2. The address of a location to receive control when the unwind
is complete, that is, a return PC to replace the current PC
in the call frame of the procedure that will receive control
when all specified frames have been removed from the stack.

If no arguments are supplied to the $UNWIND service, the unwind is
performed to the «caller of the procedure that established the
condition handler that is issuing the SUNWIND service. Control 1is
returned to the address specified in the return PC for that procedure.
Note that this is the default and normal case for unwinding.

Figure 3-21 illustrates an unwind situation and describes some of the
possible results.

During the actual unwinding of the call stack, the unwind routine
examines each frame 1in the call stack to see if a condition handler
has been declared. If a handler has been declared, the unwind routine
calls the handler with the code SS$ UNWIND in the condition name
argument of the signal array. When a condition handler is called with
this condition, it can perform any procedure-specific cleanup
operations required. After the handler returns, the call frame is
removed from the stack.

Thus, in Figure 3-21, HANDLERB may be called a second time, during the
unwind operation. Note that HANDLERB does not have to be able to
specifically interpret the SS$_UNWIND condition; the RET 1instruction
merely returns control to the unwind procedure, which does not check
any status values.

'\\/

Notes:

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

0
FP
Procedure
D
A
5 -t
FP
Procedure
Cc
|
HANDLERB
FP
Procedure
B
)
0
FP
Procedure
A
The procedure call stack 1is as shown. Assume that no

exception vectors are declared for the process and that the
exception condition occurs during the execution of Procedure
D.

Since neither Procedure D nor Procedure C has established a
condition handler, HANDLERB receives control.

If HANDLERB 1issues the SUNWIND system service with no
arguments, the «call frames for B, C, and D are removed from
the stack (along with the call frame for HANDLERB 1itself),
and control returns to Procedure A. Procedure A receives
control at the point following its call to Procedure B.

If HANDLERB issues the S$UNWIND system service specifying a
depth of 2, call frames for C and D are removed, and control
returns to Procedure B.

Figure 3-21 Unwinding the Call Stack

3-75

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.8 Multiple Exception Conditions

It is possible for a second exception condition to occur while a
condition handler or a procedure that it has called 1is still
executing. In this case, when the exception dispatcher searches for a
condition handler, it skips the frames that were searched to locate
the first handler.

The search for a second handler terminates in the same manner as the
initial search, as described in Section 3.7.3.

If the SUNWIND system service is issued by the second active condition
handler, the depth of the unwind is determined according to the same
rules followed in the exception dispatcher's search of the stack: all
frames that were searched for the first condition handler are skipped.

If an exception occurs during the execution of a handler established
in the primary or secondary exception vector, that handler must handle
the additional condition.

N’

N

HOW TO USE SYSTEM SERVICES

3.8 MEMORY MANAGEMENT SERVICES

The VAX/VMS memory management routines map and control the
relationship between physical memory and a process's virtual address
space. These activities are, for the most part, transparent to vyou,
as a user, and to your programs. However, you can in some cases, make
a program more efficient by explicitly controlling its virtual memory
usage. Memory management services allow you to:

e Increase or decrease the virtual address space available in a
process's program or control region

@ Control the process's working set size and the swapping of
pages between physical memory and the paging device

e Define disk files containing data or shareable images and map
the file into the process's virtual address space

This section discusses the services that provide these capabilities.
However, before vyou use any of these services, you should have an
understanding of the VAX-11l memory structure and memory management
routines. Where pertinent, virtual memory concepts related to the use
of particular services are discussed 1in this section. For more
background information, see the VAX/VMS Summary Description.

3.8.1 Increasing Virtual Address Space
The virtual address space of a process is divided into two regions:

1. The program (P0) region contains the image currently being
executed.

2. The control (Pl) region contains the information maintained
by the system on behalf of the process. It also contains the
user stack, which is located at the lower-addressed end of
the control region.

Figure 3-22 illustrates the layout of a process's virtual memory. The
initial size of a process's virtual address space depends on the size
of the image being executed.

To facilitate memory protection and mapping, the virtual address space
is subdivided into 512-byte wunits called pages. Using memory
management services, a process can add a specified number of pages to
the end of either the program region or the control region. Adding
pages to the program region provides the process with additional space
for image execution; for example, for the dynamic creation of tables
or data areas. Adding pages to the control region increases the size
of the user stack. (The wuser stack can also be expanded when the
image is linked.)

The maximum size to which a process can increase its address space 1is
controlled by an entry in the system authorization file for the user.

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

Virtual
Address
00000000 I
PROGRAM REGION
(PO) direction of
grO\'Nth
|
length— — — — — — '— —
3FFFFFFF
40000000
CONTROL REGION
(P1)
length— — — — — — ‘ — — =
I
1
direction of
growth
7FFFFFFF !

Figure 3-22 Layout of Process Virtual Address Space

'3.8.2 Increasing and Decreasing Virtual Address Space

The Expand Program/Control Region ($EXPREG) system service adds pages
to the end of either the program or control region, and optionally
returns the range of virtual addresses of the new pages. For example,
if you want to add four pages to a process's program region, you can
code a call to the $EXPREG system service as follows:

REGSFACE?
+ RLKL 2 FRETURN START AND END OF NEW FAGES

+

$EXFREG..S FAGCNT=#4 s RETANR=REGSFACE s REGION=%0 sGET 4 FAGES

To add the same number of pages to the <control region, you would
specify REGION=#1.

When pages. that have been added at the end of a region are no longer
needed, they can be deleted with the Contract Program/Control Region
(SCNTREG) system service. As for the $EXPREG service, you code the
number of pages you want deleted and the region:

$CNTREG..S FPAGCNT=#4yREGION=%0
Note that the REGION argument for both the S$SEXPREG and $CNTREG

services 1is optional; if not specified, the pages are added to or
deleted from the program region, by default.

o’

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

The SEXPREG and S$CNTREG services can only add or delete pages from the
end of a particular region. When you need to add or delete pages that
are not at the end of these regions, you can use the Create Virtual
Address Space (SCRETVA) and Delete Virtual Address Space ($SDELTVA)
system services. For example, if you have used the $EXPREG service
twice to add pages to the program region, and want to delete the first
range of pages, but not the second, you could use the $DELTVA system
service as shown in the following sequence:

REGSFACEA? +BLKL 2 $START ANDN END OF FIRST AREA
BEGSFACEE: +ELKL 2 $START AND END OF SECOND AREA

*

$EXFREG..S FAGCNT=#4yRETADR=BEGSFACEAyREGION=#0 #FOUR FAGES
BRSEW ERROR

*

$EXFREG.S FAGCNT=#3yRETAIR=REGSFACERyREGION=%0 $THREE FAGES
BSEW ERROR

+

$DELTVA_S INADR=REGSFACEA FDELETE FIRST 4 FAGES
BSRW ERROR

In the above example, the first call to SEXPREG adds four pages to the
program region; the virtual addresses of the pages are returned in
the 2-longword array at BEGSPACEA. The second call adds three pages,
and returns the addresses at BEGSPACEB. The call to $DELTVA deletes
the first four pages that were added.

3.8.2.1 1Input Address Arrays and Return Address Arrays - When the
SEXPREG system service adds pages to a region, it adds them in the
normal direction of growth for the region. The return address array,
if requested, indicates the order in which the pages were added:

° If the program region 1is expanded, the starting virtual
address is lower than the ending virtual address.

o If the control region 1is expanded, the starting virtual
address is higher than the ending virtual address.

Conversely, the direction of contraction with the $CNTREG system
service 1is from a higher to a lower address in the program region and
from a lower to a higher address in the control region.

The addresses returned indicate the first byte in the first page added
or deleted and the last byte in the last page added or deleted.

When input address arrays are specified for the Create or Delete
Virtual Address Space system services (SCRETVA and S$DELTVA,

‘respectively), these services add or delete pages beginning with the

address specified in the first longword and ending with the address
specified in the second longword.

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

The order in which the pages are added or deleted does not have to be
in the normal direction of growth for the region. Moreover, since
these services only add or delete whole pages, they ignore the
low—-order 9 bits of the specified virtual address (the low-order 9
bits contain the byte address). The virtual addresses returned do
indicate the byte addresses.

Table 3-6 shows some sample virtual addresses that might be specified
as input to $CRETVA or $DELTVA and shows the return address arrays, if..
all pages are successfully added or deleted. ’

Table 3-6
Sample Virtual Address Arrays
Input Array Output Array Number of

Start End Region Start End Pages

1010 1670 PO 1000 17FF 6

1450 1451 PO 1400 15FF 1

1450 1450 PO 1400 15FF 1
7FFEC010 7FFEC010 P1 JFFECLFF 7FFEC000 1

Note that if the input virtual addresses are the same, a single page
is added or deleted. The return address array indicates that the page
was added or deleted in the normal direction of growth for the region.

3.8.3 Page Ownership and Page Protection

Each page in a process's virtual address space 1is owned by a
particular access mode. The owner is the access mode that created the
page. For example, pages in the program region initially provided for
the execution of an image are owned by user mode. Pages that the
image creates dynamically are also owned by user mode. Pages in the
control region, except for the pages containing the user stack, are
normally owned by more privileged access modes. ‘

Only the owner of a page can delete the page or otherwise affect it.
The owner of a page can also indicate, by means of a protection code,
the type of access that each access mode will be allowed.

The Set Protection on Pages ($SETPRT) system service changes the
protection assigned to a page or group of pages. The protection is
expressed as a code that indicates the specific type of access (none,
read-only, read, or write) for each of the four access modes (kernel,
executive, supervisor, user). Only the owner access mode or a more
privileged access mode can change the protection for a page.

When an image attempts to access a page that is protected against the
access attempted, a hardware exception, called an access violation,
occurs. When an image calls a system service, the service determines
whether an access violation would occur when the 1image attempted to
read or write a page it is not privileged to access. If so, the
service returns the status code SS$_ACCVIO.

S’

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

Since the memory management services add, delete, or modify a single
page at a time, one or more pages can be successfully affected before
an access violation is detected. 1If the RETADR argument is specified
in the service call, the service returns the addresses of pages
actually affected before the error. If no pages are affected, that
is, 1if an access violation would occur on the first page specified,
the service returns a -1 in both longwords of the return address
array.

If the RETADR argument is not specified, no information is returned.

3.8.4 Working Set Paging

When a process is executing an image, a subset of its pages resides in
physical memory; these pages are called the process's working set.
The working set includes pages in both the program region and the
control region.

When the image refers to a page that is not 1in memory, a hardware
fault occurs, and the page 1is brought into memory, replacing an
existing page in the working set. If the page that 1is going to be
replaced has been modified during the execution of the image, that
page is written onto a secondary storage device, called the paging
device. When this page 1is needed again, it is brought back into
memory, again replacing a current page from the working set. This
exchange of pages between physical memory and secondary storage is
called paging.

The paging of a process's working set is transparent to the ©process.
However, 1if a program is very large, or if pages in the program image
that are heavily used are being paged 1in and out frequently, the
overhead required for paging may decrease the program's efficiency.
Some system services allow a process, within 1limits, to counteract
these potential problems:

° The Adjust Working Set Limit (SADJWSL) system service
increases the maximum number of pages that a process can have
in its working set.

) The Purge Working Set ($SPURGWS) system service removes page
from the working set.

stem service makes

. The Lock Pages in Working Set g
Figible for paging.

a page or pages in the working

The initial size of a process's working set 1is defined by the
process's working set default (WSDEFAULT) quota. - Since some programs
may have larger memory requirements than others, a program can call
the SADJWSL system service to dynamically increase the process's
working set limit. When the additional pages are no longer needed in
the working set, the program can call the $ADJWSL service to decrease

‘the working set limit. Or, it can call the $SPURGWS system service to

remove pages no longer in use from the working set.

When the system pages a process's working set, the pages in the
working set are paged on a first-in, first-out basis. Under some
circumstances, an image may not want certain pages to be paged out at
all; then, it can lock them in the working set. As long as the
process's working set is in memory, these pages cannot be paged out
until they are explicitly unlocked with the Unlock Pages in Working
Set (SULWSET) system service.

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

3.8.5 Process Swapping

The operating system balances the needs of all the processes that are
currently executing, providing each with the system resources it
requires on an as-needed basis. The memory management routines
balance the process's memory requirements. Thus, the sum of the
working sets for all processes that are currently in physical memory
is called the balance set.

When a process whose working set is in memory becomes 1inactive -- for
example to wait for an I/O request or to hibernate -- the entire
working set may be removed from memory to provide space for another
process's working set to be brought in for execution. This removal of
a process's working set is called swapping. When a process is swapped
out of the balance set, all of the pages of its working set (modified
and unmodified pages) are swapped, including any pages that were JSTom
locked in the working set.

It is possible for a high-priority process to lock its entire working
set in the balance set. While pages can still be paged in and out of
the working set, the process remains in memory even when it is
inactive. To lock itself in the balance set, the process issues the
Set Process Swap Mode (SSETSWM) system service. For example:

$SETSWM..S SWFFLG=#1

This call to $SSETSWM disables process swap mode. Swap mode can also
be disabled by setting the appropriate bit in the STSFLG argument to
the Create Process (SCREPRC) system service. A user privilege 1is
required, however, to alter process swap mode.

3, lock pages in memory is with the Lock
Pages 1in Memory Aystem service. When a page is locked in
memory with this 7the page remains in memory even when the
remainder of the process 's working set is swapped out of the balance
set. This system service has limited applicability, but may be useful
in special <circumstances, for example, for routines that perform I/O
operations to slow devices or graphics devices.

Pages locked in memory can be unlocked with the Unlock Pages in Memory
(SULKPAG) system service. The user privilege PSWAPM is required to
issue both of these services.

3.8.6 Sections

Sections are disk files or portions of disk files containing data or
code . that can be brought into memory and made available to a process
for manipulation and execution. Sections are either private or
shared:

° Private sections are accessible only by the process that
creates them; a process can define a disk data file as a
section, map it into 1its wvirtual address space, and
manipulate it.

° Global sections can be shared by more than one process. One
copy of the global section resides in physical memory, and
each process sharing it refers to the same copy. A global
section can contain shareable code or data that can be read,
or read and written, by more than one process. Global
sections are either temporary or permanent, and can be
defined for use within a group or on a system-wide basis.

e

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

When pages in sections are paged out of memory during image execution,
they are written back into the section file, rather than onto
secondary storage, as is the normal case.

The use of sections involves two distinct operations:

1. The creation of a section defines a disk file as a section
and 1informs the system what portions of the file contain the
section.

2. The mapping of a section makes the section available to a
process and establishes the correspondence between virtual
blocks in the file and specific addresses in the process's
virtual address space.

The Create and Map Section ($SCRMPSC) system service creates and/or
maps a private section or a global section. Since a private section
is used only by a single process, creation and mapping are
simultaneous operations. 1In the case of a global section, one process
can create a permanent global section and not map it; other processes
can map to it. A process can also create and map a global section in
one operation.

The following sections describe creating, mapping, and using sections.
In each case, considerations that are common to both private sections
and global sections are described first, followed by additional notes
and requirements for the use of global sections.

3.8.6.1 Creating Sections -~ The steps involved in -section creation

1. Opening or creating the disk file containing the section

2. Defining which wvirtual blocks in the file comprise the
section

3. Defining the characteristics of the section

3.8.6.2 Opening the Disk File - Before a file can be used as a
section, it must be opened using RMS.

The following example shows the file access block (FAB), OPEN macro,
and channel specification on the $CRMPSC system service to open an
existing file for reading:

SECFAR? $FAR FNM=<GECTION. TST>y FOF=UF0 3FILE ACCESS EBLOCK

$OFEN FaR=SECFAR
$CRMFGC..S CHAN=SECFARIFARSL .STVr ...

The file options (FOP) parameter indicates that the file 1is to be
opened for user I/0; this option is required so that RMS assigns the
channel using the access mode of the caller. RMS returns the channel
number on which the file is accessed in the offset FAB$L_STV; this
channel number is specified as input to the $CRMPSC system service
(CHAN argument). The same channel number can be used for multiple
create and map section operations. It can also be used to read and
write virtual blocks to the section file with the Queue I/O Request
(SQIO) system service.

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

The file may be a new file that is to be created while it is in use as
a section. In this case, use the SCREATE macro to open the file. TIf
you are creating a new file, the file access block (FAB) for the file
must specify an allocation gquantity (ALQ parameter).

SCREATE can also be used to open an existing file; if the file does
not exist, 1t will be created. The following example shows the
required fields in the FAB for the conditional creation of a file:

GRI.FAR: $FAR FNM=<GLORBAL TET >y ALQ=4 s FAC=FUT y ~
CFOF=SURFOsCIF s GRT

$CREATE FAR=GRL.FAR

When the SCREATE macro is invoked, it creates the file GLOBAL.TST if
the file does not currently exist. The CBT (contiguous-best-try)
option requests that if possible, the file be contiguous. Although it
is not required that section files be contiguous, better performance
can result if they are.

3.8.6.3 Defining the Section Extents - Once the file is successfully
opened, the S$CRMPSC system service can create a section from the
entire file, or from only certain portions of it. The following
arguments to SCRMPSC define the extents of the file that comprise the
section:

® PAGCNT (page count). This argument 1is required; it
indicates the number of virtual blocks in the file. These
blocks correspond to pages in the section.

® VBN (virtual block number). This argument defines the number
of the virtual block in the file that is the beginning of the
section. It is an optional argument; if not specified, it
defaults to 1l; that is, the first virtual block in the file
is the beginning of the section.

3.8.6.4 Defining the Section Characteristics - The FLAGS argument to
the SCRMPSC system service defines the following section
characteristics:

° Whether it is a private section or a global section (the
default is to create a private section)

® How the pages of the section are to be treated when they are
copied into physical memory or when a process refers to them.
The pages in a section can be:

--read/write or read-only

--created as demand-zero pages or as copy-on-reference pages,
depending on how the processes are going to use the section
and whether the file contains any data (see Section 3.8.6.8,
"Section Paging").

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

3.8.6.5 Defining Global Section Characteristics - If the section is a
global section, it must be assigned a character string name (GSDNAM
argument) so that other processes can identify it when they are
mapping it.

The FLAGS argument specifies the type of global section:

Group temporary (the default)
Group permanent

System temporary

System permanent

Group global sections can be shared only by processes executing with
the same group number. The name of a group global section is
implicitly qualified by the group number of the process that created
it. When other processes map to it, their group numbers must match.

A temporary global section is automatically deleted when no processes
are mapped to it.

Permanent global sections remain in existence even when no processes
mapped to them. They must be explicitly marked for deletion with ‘the
Delete Global Section ($DGBLSC) system service.

The user privileges PRMGBL and SYSGBL are required to create permanent
group global sections, or system global 'sections (temporary or
permanent) , respectively.

A system global section can be made available to all processes in the
system.

Optionally, a process creating a global section can specify a file
protection mask (PROT argument), restricting all access or a type of
access (read, write, extend, delete) to other processes.

3.8.6.6 Mapping Sections - When you code the $CRMPSC system service
to create and/or map a section, you must provide the service with a
range of virtual addresses (INADR argument) into which the section 1is
to be mapped.

If you know specifically which pages the section should be mapped
into, you provide these addresses in a 2-longword array. For example,
to map a private section of 10 pages into virtual pages 10 through 19
of the program region, specify the input address array as follows:

MAFRANGE ¢
+LONG "X1400 sADDRESS (HEX) OF FAGE 10
+LONG "X2300 FADDRESS (HEX) OF FAGE 19

.The addresses specified do not have to be currently in the ©process's
virtual address space. The $CRMPSC system service calls the Create
Virtual Address Space ($SCRETVA) system service to create the required
virtual address space before mapping the secion. If you code the
RETADR argument, the service returns the range of addresses actually
mapped.

You do not need to know explicit addresses to provide an input address
range. If you want the section mapped into the current end of the
program region, you can use the $EXPREG system service to add the
pages at the end of the program region and use the return address
array from $EXPREG as input to the $CRMPSC system service.

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

You can also obtain the address of the next available page 1in the
region by calling the Get Job/Process Information ($GETJPI) system
service. The $GETJPI service returns an address you can use for the
starting address in the'range. You then provide a very high address
in the program region as the ending address: $CRMPSC creates only as
many pages as necessary to map the section, and returns the addresses
mapped in the return address array. The following example shows such
a sequence:

GETVAIR: . WORD 4 sLENGTH OF RUFFER
+WORD JFI$_FREFOVA sITEM IDENTIFIER
+L.ONG MAFRANGE sANDRESS OF RUFFER
+LONG 0 s NOT NEEDED
+LONG 0 sEND OF JPI LIST
MAFRANGE ¢ sFIRST FREE FO FAGE
+RBLKL 1
+LONG "XI1FFFFFFF sVERY LARGE ADDRESS
RETRANGE: . $GET RETURN ADDRESS RANGE
+BLKL 2

*

*

$GETJFI..S ITMLST=GETVADR $FIND FIRST FREE FAGE
$CRMFSC..S INADR=MAFRANGE s RETADR=RETRANGE v ...

The item code JPI$_FREPOVA is defined 1in the $JPIDEF macro. For
complete details on how to use the $SGETJPI system service, see the
service description in Chapter 4.

Once a section has been successfully mapped, the image can refer to
the pages using a base register and predefined symbolic offset names
or labels defining offsets of an absolute program section or
structure.

- Figure 3-23 shows an example of creating and mapping a process
section.

SECFAR! $FAR FNM=<8ECTIONTST: s FOF=UFQOyFAC=FUT

MAFRANGE $
+LLONG ~X1400 sFIRST FAGE
+L.ONG "X2300 i LAST FAGE
RETRANGE $
+ BLKIL 1 sFIRST FAGE MAFFED
ENDRANGE ¢
+ BLKL 1 sLAST PAGE MAFFED
"$OPEN FAR=5ECFAR FOFEN SECTION FILE

RSEW ERROR

‘9$CRMPSCmS INADR=MAFRANGE »— 7 INFUT ADDRESS ARRAY
RETADR=RETRANGE »- s0UTFUT ARRAY
FAGCNT=%4 5 iMAF FOUR FAGES
'G’FLAGSm#SEC$MMNRT SREADZWRITE SECTION
CHAN=SECFAR+FARSL..STYV FCHANNEL NUMBER
RSBW ERROR
"HOUL RETRANGE yR6& FFOINT TO START OF SECTION

Figure 3-23 Creating and Mapping a Private Section

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

Notes on Figure 3-23:

@ The OPEN macro opens the section file defined in the file
access block SECFAB.

e’ The S$CRMPSC system services uses the addresses specified at
MAPRANGE to specify an input range of addresses into which
the section will be mapped. The PAGCNT argument requests
that only four pages of the file be mapped.

G’ The FLAGS argument requests that the pages in the section be
read/write. The symbolic flag definitions for this argument
are defined in the S$SECDEF macro. Note that the file access
field (FAC parameter) in the FAB also indicates that the file
is to be opened for writing.

¢, When S$CRMPSC completes, the addresses of the four pages that
were mapped are returned in the output address array at
RETRANGE. The address of the beginning of the section Iis
placed in register 6, which serves as a pointer to the
section.

3.8.6.7 Mapping Global Sections - A process that creates a global
section can map to it when it creates it. Then, other processes can
map it by calling the Map Global Section (SMGBLSC) system service.

When a process maps a global section, it must specify the global
section name assigned to the section when it was created, whether it
is a group or system global section, and whether it desires read-only
or read/write access. The process may also specify:

° A version identification (IDENT argument), indicating the
version number of the global section (When multiple verisons
exist) and whether more recent versons are acceptable to the
process. :

® A relative page number (RELPAG argument), specifying the page
number, relative to the beginning of the section, to begin
mapping the section. In this way, processes can use only
portions of a section. Additionally, a process can map a
piece of a section into a particular address range and
subsequently map a different piece of the section into the
same virtual addresses.

Cooperating processes can both issue a $CRMPSC system service to
create and map the same global section. The first process to call
the service actually creates the global section; subsequent attempts
to create and map the section result only in mapping the section for
the caller. The successful return status code SS$_CREATED indicates
that the section did not already exist when the $CRMPSC system service
was called. If the section did exist, the status code SS$_NORMAL is
returned.

Figure 3-24 shows an example of the creation of a global section, and
a second process mapping the section.

3-87

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

Process ORION

GRL.CLUSTEF ¢ s COMMON EVENT FLAG CLUSTER NAME
DESCRIFTOR <GLORAL _CLUSTER:

GBLSET = 65 JFLAG NUMRBRER TO ASSOCIATE AND SET

GRLWAIT = 66 FFLAG NUMERER TO WAIT FOR

GLORALSEC? yGLORAL SECTION NAME

GRLFAG?

DESCRIFTOR <GLOEAL_SECTION:

$FAR FNM=<GLOBAL + TST> s FOP=<UFQsyCIF sy CRT >y ~
AL Q=4 FAC=FUT

+

$ASCEFC..S EFN=¥GRLSET »NAME=GRLCLUSTER
BSEW ERROR

€’$CRMP8C“S GSONAM=GLOBALSECs~ FCREATE GLORAL SECTION

FLAGS=#GECSM_WRT I SECHM..GEL.y + 4+
RSEW ERROR

$SETEF .S EFN=#GRL.SET FSET COMMON EVENT FLAG
[Process CYGNUS
CLUSTER?: DESCRIFTOR <GLORAL_CLUSTER: sCLUSTER NAME
GEBLSET = &%
GRLWAIT = 46
SECTIUN: DESCRIFTOR <GLOBAL._.SECTION> $SECTION NAME

3

+

©#ASCEFC.S EFN=#GRLSET y NAME=CLUSTER

BSRW ERROR

SWATITFR..S EFN=#GRLSET

ESERW ERROR

$MOELSC..S INADR=MAFRANGE y RETADR=RETRANGE » ~
FLAGE=#SECEM..GRL s~ §GLORAL SECTION
GSINAM=SECTION $SECTION NAME

EBSEW ERROR

Figure 3-24 Creating and Mapping a Global Section

Notes on Figure 3-24:

The processes ORION and CYGNUS are in the same group. Each
process first associates with a common event flag cluster
named GLOBAL CLUSTER to use common event flags to synchronize
their use of the section.

ORION creates the global section named GLOBAL SECTION,
specifying flags that indicate that it is a global section
(SECSM_GBL) and that it is read/write. Input and output
address arrays, the page count parameter and the channel
number arguments are not shown; procedures for coding them
are the same as shown in Figure 3-23.

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

‘, The process CYGNUS associates -with the common event flag
cluster and waits for the flag defined as GBLSET. ORION sets
this flag when it has completed creating the section. To map
the section, CYGNUS specifies the input and output address
arrays, the flag indicating that it is a global section, and
the global section name. The number of pages mapped 1is
always the same as that specified by the creator of the
section.

3.8.6.8 Section Paging - The first time that an image executing in a
process refers to a page that was created during the mapping of a
section, the page is copied into physical memory. The address of the
page in the process's virtual address space is mapped to the physical
page. During the execution of the image, normal paging can occur;
however, pages in sections are not written onto secondary storage
devices when they are paged out, as is the normal case. Rather, 1if
they have been modified, they are written back into the section file
on disk. The next time a page fault occurs for the page, the page 1is
brought back from the section file.

In the case of global sections, more than one process can be mapped to
the same physical pages. These pages are paged out, and written back
to the disk file defined as the section, only when no processes are
currently mapped to them.

If the pages in a section are defined as demand-zero pages oOr
copy-on-reference pages when the section was created, the pages are
treated differently.

If the call to SCRMPSC requested that pages in the section be treated
as demand-zero pages, these pages are initialized to zeros when they
are first brought into physical memory. If the file is either a new
file that 1is being created as a section or a file that is being
completely rewritten, demand-zero pages provide a convenient way of
initializing the pages.

If the call to SCRMPSC requested that pages 1in the section be
copy-on-reference pages, each process that maps to the section
receives its own copy of the section, on a page-by-page basis from the
file, as it refers to them. These pages are never written back into
the section file. ;

3.8.6.9 Reading and Writing Data Sections - Read/write sections
provide a way for a process, or cooperating processes, to manipulate
data files in virtual memory.

The sharing of global sections may involve application-dependent
synchronization techniques. For example, one process can create and
map to a global section in read/write status; other processes can map
to it in read-only status, and interpret data written by the first
process. Or, two or more processes can write 'to the section
concurrently. (In this case, the application program must provide the
necessary synchronization and protection.)

When a file that has been mapped as a section is written back to disk,
its version number is not incremented but the revision number is. A
full directory listing indicates the revision number of the file and
the date and time that the file was last updated. '

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

When the file has been updated, the process or processes can release,
or unmap, the section. The section is then written back into the disk
file defined as a section.

3.8.6.10 Releasing and Deleting Sections - A process unmaps a section
by deleting the virtual addresses in its own virtual address space to
which it has mapped the section. If a return address range was
specified to receive the virtual addresses of the mapped pages, this
address range can be used as input to the Delete Virtual Address Space
(SDELTVA) system service. For example:

SOELTVALS INADR=RETRANGE

When a process unmaps a private section, the section is deleted; that
is, all control information maintained by the system is deleted. A
temporary global section is deleted when all processes that have
mapped to it have unmapped it. Permanent global sections are not
deleted until they are specifically marked for deletion with the
Delete Global Section ($DGBLSC) system service; then, they are
deleted when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the
- section file, but rather cancels the process's association with the
file. 'Moreover, when a process deletes pages mapped to a read/write
section and no other processes are mapped to it, all modified pages
are written back into the section file.

When all processes mapped to a section have deleted the pages into
which the section was mapped from their virtual address space, the
channel can be deassigned. The process that created the section can
deassign the channel (with the Deassign I/0 Channel system service),
for example:

$OABEEN..S CHAN=GRLFAR+FARSL STV

3.8.6.11 Checkpointing Sections - Since read/write sections are
normally not updated on disk until the physical pages they occupy are
paged out, or until all processes referring to the section have
unmapped it, a process may have to ensure that all modified pages have
been successfully written back into the section file.

The Update Section File on Disk ($UPDSEC) system service writes the
modified pages in a section into the disk file. The $UPDSEC system
service is described in Chapter 4.

3.8.6.12 Image Sections - Global sections can contain shareable code.
An image file that is going to be defined as a section must contain
position—independent code. :

The operating system uses global sections to implement shareable code
as follows:"

1. The object module containing code to be shared is 1linked to
produce a shareable 1image. The shareable image is not, in
itself, executable. It contains a series of sections, called
image sections.

L

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

2. A user links private object modules with the shareable image
to produce an executable image. Only image section descriptor
records from the shareable image file are bound with the
image sections from the user's-code.

3. The system manager uses the INSTALL command to create a
permanent global section from the shareable image file making
the image sections available for sharing.

4. wWhen the user runs the executable image, the system
automatically maps the global sections created by the INSTALL
command into the virtual address space of the user's process.

For details on how to create and identify shareable images, and how to
link them with private object modules, see the VAX-1l1 Linker Reference
Manual. For information on installing shareable 1images and making
them available for sharing as global sections, see the VAX/VMS System
Manager's Guide.

-

CHAPTER 4

SYSTEM SERVICE DESCRIPTIONS

This chapter describes each of the VAX/VMS system services. The
services are presented in alphabetical order, by their abbreviated
names.

Each system service description consists of the following categories,

‘as applicable:

Macro Format:

Shows the macro name, with all keyword arguments 1listed in
positional order. Spaces between arguments are present for
readability, and are not part of the macro syntax.

High-Level Language Format:

Shows the procedure name and a generalized format for calling the

service from a high-level language, with all arguments listed in

positional order. Spaces between arguments are present for

readability, and are not part of the statement syntax.
arguments...

Describes each of the arguments.

Return Status:

Lists the possible return status codes from the service with an
explanation of the return condition. The successful returns are
listed first, in alphabetical order, followed by warning and
severe error return status codes also in alphabetical order. All
status codes are severe errors, unless otherwise indicated.

Three severe errors may occur for all services and are not listed
with each service description. These are:

S5$_ACCVIO
The argument list cannot be read by the caller.

SS$_INSFARG
Not enough arguments were supplied to the service.

SS$_ILLSER
An invalid system service was called.

SYSTEM SERVICE DESCRIPTIONS

Privilege Restrictions:

Notes any user privileges required to execute the service or to
request a particular function of the service, or any access mode
restrictions applied to the service.

Resources Required/Returned:

Lists any system resources or process quotas used by the service,
or returned to a process as a result of service execution.

‘Notes:

Contain the 'fine print' of the service description. All
important information pertaining to the service that is not
covered in one of the other headings is given here, as well as
references to related services or additional information.

S’

SYSTEM SERVICE DESCRIPTIONS
$ADJSTK

4.1 S$ADJSTK - ADJUST OUTER MODE STACK POINTER

The Adjust Outer Mode Stack Pointer system service modifies the stack
pointer for a 1less privileged access mode. This service is used by
the operating system to modify a stack pointer for a 1less privileged
access mode after placing arguments on the stack.

Macro Format:

SADJSTK [acmode] ,[adjust] ,newadr

High-Level Language Format:

SYSSADJSTK ([acmode] ,[adjust] ,newadr)

acmode
access mode for which the stack pointer is to be adjusted.

adjust
signed adjustment value. The contents of the longword addressed
by the NEWADR argument are adjusted by the amount specified in
the low-order 16 bits of this argument. The result 1is loaded
into the stack pointer for the specified access mode.

If not specified, or specified as 0, the stack pointer is loaded
with the address specified by the NEWADR argument.

newadr ’

address of a longword to receive the updated value. If the
longword contains a nonzero value, then that value is updated by
the ADJUST argument value and the result is loaded into the stack
pointer.

If the longword contains a 0, the current value of the stack
pointer is updated by the ADJUST argument value.

Return Status:

SS$_NORMAL
Service successfully completed.

SS8$_ACCVIO
The longword to store the updated stack pointer or a portion of
the new stack segment cannot be written by the caller.

SS$_NOPRIV
The specified access mode is equal to or more privileged than the
calling access mode. .

SYSTEM SERVICE DESCRIPTIONS
$ADJSTK - ADJUST OUTER MODE STACK POINTER

Combinations of zero and nonzero values for the ADJUST argument
and the NEWADR longword provide the following results:

If the ADJUST And the longword The stack
argument addressed by pointer
specifies: NEWADR contains: is:

0 0 not changed

0 an address loaded with the

address specified

a value 0 adjusted by the
specified value

a value an address loaded with the
specified address,
adjusted by the
specified value

In all cases, the updated stack pointer value is written into the
longword addressed by NEWADR.

N

.v‘\/

SYSTEM SERVICE DESCRIPTIONS

$SADJWSL

4.2 S$ADJWSL - ADJUST WORKING SET LIMIT

The Adjust Working Set Limit system service changes the current 1limit
of a process's working set size by a specified number of pages. This
service allows a process to control the number of pages resident 1in
physical memory for the execution of the current image.

Macro Format:

$ADJWSL [pagcnt] , [wsetlm]

High-Level Language Format:

SYS$SADJWSL ([pagent] , [wsetlm])

pagcnt
number of pages to adjust the current maximum working set size.
A positive value increases the maximum working set size; a
negative value decreases it. If not specified, or specified as
0, the current working set size limit is returned in the address
specified by the WSETLM argument, if that argument is coded.

wsetlm
address of a longword to receive the new working set size 1limit

or the current working set size limit, if the PAGCNT argument is
not specified.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The longword to receive the new working set size limit cannot be
written by the caller.

Resources Required/Returned:

The initial value of a process's working set size 1is controlled
by the working set default quota (WSDEFAULT). The maximum value
to which it may be increased is controlled by the working set
limit quota (WSQUOTA).

If a program attempts to adjust the working set size beyond the
system-defined upper and 1lower 1limits, no error condition is
returned. The working set size is adjusted to the maximum or
minimum size allowed; the caller can check the new working set
size to verify the change.

For more details on memory management concepts and additional services
that help a process control paging and swapping, see Section 3.8,
"Memory Management Services."

SYSTEM SERVICE DESCRIPTIONS
$ALLOC

4.3 $ALLOC - ALLOCATE DEVICE

The Allocate Device system service reserves a device for exclusive use
by a process and its subprocesses. No other process can allocate the
device or assign channels to it until the image that called $ALLOC
exits or explicitly deallocates the device with the Deallocate Device
($SDALLOC) system service.

Macro Format:

SALLOC devnam ,[phylen] ,[phybuf] ,[acmode]

High-Level Language Format:

SYSSALLOC (devnam , [phylen] , [phybuf] , [acmode])

devnam)

address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character in the string is an
underline character(_), the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used. The final
name, however, cannot contain a node name unless the name is that
of the host system.

phylen
address of a word to receive the length of the allocated device
name string.

phybuf
address of a character string descriptor pointing to the buffer
to receive the physical device name string of the allocated
device. The first character in the string returned is an
underline character (_).

acmode :
access mode to be associated with the allocated device. The
specified access mode 1is maximized with the access mode of the
caller. Only equal or more privileged access modes can
deallocate the device.

Return Status:

SS$_NORMAL
Service successfully completed.

SSS_BUFFEROVF
Service successfully completed. The physical name returned
overflowed the buffer provided, and has been truncated.

SS$_ACCVIO
The device name string or string descriptor or physical name
buffer descriptor cannot be read, or the physical name buffer
cannot be written, by the caller.

SYSTEM SERVICE DESCRIPTIONS
$ALLOC - ALLOCATE DEVICE

SS$ DEVALLOC
~ Warning. The device is already allocated to another process.
Or, an attempt to allocate an unmounted shareable device failed
because other processes had channels assigned to the device.

SS$ DEVMOUNT

~ The specified device is currently mounted and cannot be
allocated; or, the device 'is a mailbox.

SS$_IVDEVNAM
No device name string was specified or the device name string
contains invalid characters.

SS$_IVLOGNAM

The device name string has a length of 0, or has more than 63
characters.

SS$_NONLOCAL
Warning. The device is on a remote node.

S5$_NOPRIV
An attempt was made to allocate a spooled device and the
requesting process does not have the required privilege.

SS$_NOSUCHDEV
Warning. The specified device does not exist in the host system.

Privilege Restrictions:

A user privilege is required to allocate a spooled device.

Notes:

1. When a process calls the Assign I/O Channel ($ASSIGN) system
service to assign a channel to a nonshareable device, such as
a terminal or line printer, the device is implicitly
allocated to the process.

2. This service can only be used to allocate devices that exist
on the host system.

For an example of how to use this service, and a description of the
allocation of devices by generic device names, see Section 3.4,
"Input/Output Services."

SYSTEM SERVICE DESCRIPTIONS
$ASCEFC

4.4 S$ASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

The Associate Common Event Flag Cluster system service causes a named
common event flag cluster to be associated with a process for the
execution of the current image and assigned a process—-local cluster
number for use with other event flag services. If the named cluster
does not exist but the process has suitable privilege, the service
creates the cluster.

Macro Format:

SASCEFC efn ,name ,[prot] ,[perm]

High-Level Language Format:

SYSSASCEFC (efn ,name ,[prot] ,[perm])

efn
number of any event flag in the common cluster to be associated.
The flag number must be in the range of 64 through 95 for cluster
2 and 96 through 127 for cluster 3.

name
address of a character string descriptor pointing to the 1- to
15-character text name string for the cluster. The name is
implicitly qualified by the group number of the process issuing
the associate request.

prot
protection indicator controlling group access to the common event
flag cluster. A value of 0 (the default) indicates that any
process in the creator's group may access the cluster. A value
of 1 indicates that access is restricted to processes executing
with the creator's UIC.

perm

permanent indicator. If perm is equal to 1, the common event
cluster is marked permanent.

If perm is equal to 0, the cluster is temporary; this is the
default value.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The cluster name string or string descriptor cannot be read by
the caller.

55$_EXQUOTA
The process has exceeded its timer queue entry quota; this quota
controls the creation of temporary common event flag clusters.

SS$_INSFMEM
Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the

Set Resource Wait Mode (SSETRWM) system service.

4-8

—

. /;

SYSTEM SERVICE DESCRIPTIONS
$ASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

SS$_ILLEFC
An illegal event flag number was specified. The cluster number
must be in the range of event flags 64 through 127.

SS$_IVLOGNAM
The cluster name string has a length of 0 or has more than 15

characters.

SS$_NOPRIV
The process either does not have the privilege to create a
permanent cluster; or, the protection applied to an existing

cluster by its creator prohibits association.

Privilege Restrictions:

The user privilege PRMCEB 1is required to <create a permanent
common event flag-cluster.

Resources Required/Returned:

Creation of temporary common event flag clusters uses the
process's quota for timer queue entries (TQELM); the creation of
a permanent cluster does not effect the quota. The gquota is
restored to the «creator of the <cluster when all processes
associated with the cluster have disassociated.

Notes:

1. Wwhen a process associates with a common event flag cluster,
that cluster's reference count 1is increased by 1. The
reference count is decreased when a process disassociates the
cluster either explicitly with the Disassociate Common Event
Flag Cluster (SDACEFC) system servige, or implicitly, at
image exit. '

Temporary clusters are automatically deleted when their
reference count goes to 0; permanent clusters must be
explicitly marked for deletion with the Delete Common Event
Flag Cluster (SDLCEFC) system service. ’

2. Since this service automatically creates the common event
flag cluster if it does not already exist, cooperating
processes need not be concerned with which process executes
first to «create the cluster. The first process to call
$ASCEFC creates the cluster and the others associate with it
regardless of the order in which they call the service.

The initial state for all event flags 1in a newly-created
common event flag cluster is 0.

- 3.7 If a process has already associated a cluster number with a
- named common event flag cluster and then issues another call
. to SASCEFC with the same <cluster number, the service
-disassociates the number from its first assignment before

. associating it with its second.

For an example of the S$ASCEFC system service and descriptions of
services that manipulate event flags, see Section 3.1, "Event Flag
Services."

.

SYSTEM SERVICE DESCRIPTIONS

$ASCTIM

4.5 SASCTIM - CONVERT BINARY TIME TO ASCII STRING

The Convert Binary Time to ASCII String system service converts an
absolute or delta time from 64-bit system time format to an ASCII
string. The formats of the strings returned are described in Note 2,
below. :

Macro Format:

SASCTIM [timlen] ,timbuf ,[timadr] ,[cvtflg]

High-Level Language Format:

SYSSASCTIM([timlen] ,timbuf ,[timadr] ,[cvtflg])

timlen
address of a word to receive the 1length of the output string
returned.

timbuf
address of a character string descriptor pointing to the buffer
to receive the converted string. The buffer length specified in
the descriptor, together with the CVTFLG argument, controls what
information is returned. See Note 3, below.

timadr
address of the 64-bit time value to be converted. If no address
is specified, or is specified as 0 (the default), the current
date and time are returned. A positive time value represents an
absolute time. A negative time value represents a delta time.
If a delta time is specified, it must be less than 10,000 days.

cvtflg
conversion indicator. A value of 1 causes only the hour, minute,
second, and hundredth of second fields to be returned, depending
on the length of the buffer. A value of 0 (the default) causes
the full date and time to be returned, depending on the length of
the buffer.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_IVTIME
The specified delta time is equal to or greater than 10,000 days.

Notes:

1. The S$ASCTIM service executes at the access mode of the caller
and does not check whether address arguments are accessible
before it executes. Therefore, an access violation causes an
exception condition if the input time value cannot be read or
the output buffer or buffer length cannot be written.

SYSTEM SERVICE DESCRIPTIONS
SASCTIM - CONVERT BINARY TIME TO ASCII STRING

2. The ASCII strings returned have the following formats:
A Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

Delta Time: dddd hh:mm:ss.cc

Length
Field (Bytes) Contents Range of values
dd 2 day of month|l - 31
- 1 hyphen
mmm 3 month JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC
- 1 hyphen
YYYY 4 year 1858 - 9999
blank 1 blank
hh 2 hour 00 - 23
N : 1 .colon
) mm 2 minutes 00 - 59
: 1 colon
ss 2 seconds 00 - 59
. 1 period
cc 2 hundredths 00 - 59
of seconds
dddd 4 number of 0000 - 9999
days i
3. Some possible combinations of buffer length specification and
) CVTFLG arguments, and their results, are shown below:
Buffer Length | CVTFLG -Information
Time Value Specified Argument Returned
Absolute 24 0 date and time
Absolute 11 0 date
) Absolute 11 1 time
- Delta 17 0 days and time
Delta 11 1 time
For an example of the SASCTIM system service, see Section 3.6, "Timer
, and Time Conversion Services." T e G 1LY &meT? N
(s 30L " vatTE P e o RO
s 3 ‘ £ - F
Uliwd, T obEfeniprers DaTE VALYE T T.
et e — et

SYSTEM SERVICE DESCRIPTIONS

$ASSIGN

4.6 SASSIGN - ASSIGN I/O CHANNEL

The Assign I/O Channel system service (1) provides a device with an
I/0 channel so that input/output operations can be performed on the
device, or (2) establishes a logical link with a remote node on a
network.

Macro Format:

$ASSIGN devnam ,chan ,[acmode] , [mbxnam]

High-Level Language Format:

SYSSASSIGN (devnam ,chan , [acmode] , [mbxnam])

devnam
address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a.logical name. If the first character 1in the string 1is an
underline character (_), the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used.’

If the device name contains a double colon (::), the system
assigns a channel to the device NETO: and performs an access
function on the network.

chan v

address of a word to receive the channel number assigned.
e

acmode
access mode to be associated with the channel. The specified
access mode is maximized with the access mode of the caller. I/0
operations on the channel can only be performed from equal and
more privileged access modes.

mbxnam

address of a character string descriptor pointing to the logical
name string for the mailbox to be associated with the device, if
any. The mailbox receives status information from the device
driver, as described in Note 2, below.

An address of 0 implies no mailbox; this is the default value.

Return Status:

55§ NORMAL
Service successfully completed.

SS$_REMOTE
Service successfully completed. A logical 1link is established
with the target on a remote node. :

SS$_ACCVIO
The device or mailbox name string or string descriptor cannot be
read, or the channel number cannot be written, by the caller.

,\/

SS$

SYSTEM SERVICE DESCRIPTIONS
$ASSIGN - ASSIGN I/O CHANNEL

DEVALLOC

~ Warning. The device is allocated to another process.

SS$_

s8$_

SS$_

SS$_

SSS_

DEVNOTMBX
A mailbox name has been specified for a device that 1is not a
mailbox.

EXQUOTA
The target of the assignment is on a remote node and the process

has insufficient buffer quota to allocate a network control
block.

INSFMEM
The target of the assignment is on a remote node and there is
insufficient system dynamic memory to complete the request.

IVDEVNAM

No device name was specified or the device or mallbox name string
contains invalid characters. If the device name is a target on a
remote node, this status code indicates that the Network Connect
Block has an invalid format.

IVLOGNAM
The device or mailbox name string has a length of 0, or has more
than 63 characters. :

SS$ NOIOCHAN

No I/0 channel is avallable for assignment.

55$_NOLINKS

No logical network 11nks are available.

SS$ NOPRIV

The process does not have the privilege to perform network
operations.

SSS NOSUCHDEV

Warning. The specified device or mailbox does not exist.

SS$_NOSUCHNODE

The specified network node is nonexistent or unavailable.

SS$_REJECT

The network connect was rejected by NSP or by the partner at the
remote node; or, the target 1image exited before the connect
confirm could be issued.

Resources Required/Returned:

System dynamic memory is required if the target dev1ce is on a
remote system.

SYSTEM SERVICE DESCRIPTIONS
$ASSIGN - ASSIGN I/0 CHANNEL

For details on how to use $ASSIGN in conjunction with network
operations, see the DECnet-VAX User's Guide.

Only the owner of a device can associate a mailbox with the
device (the owner is the process that has allocated the
device, either implicitly or explicitly). Then, the device
driver can send messages containing status information to the
mailbox, as in the following cases:

° If the device is a terminal, a message indicates dialup,
hangup, or the reception of unsolicited input.

° If the target is on a network, the message may indicate
the network connect or initiate, or whether the line is
down.

° If the device is a line printer, the message indicates
that the printer is offline.

For details on the message format and the information
returned, see the VAX/VMS I/O User's Guide.

Channels remain assigned until they are explicitly deassigned
with the Deassign I/0 Channel ($DASSGN) system service, or
until the image that assigned the channel exits.

The $ASSIGN service establishes a path to a device, but does
not check whether the caller can actually perform
input/output operations to the device. Privilege and
protection restrictions may be applied by the device drivers.
For details on how the system controls access to devices, see
the VAX/VMS I/0 User's Guide.

For examples of how to use $ASSIGN to assign channels for input/output
operations, see Section 3.4, "Input/Output Services."

N>

N
N

SYSTEM SERVICE DESCRIPTIONS

$BINTIM

4.7 $BINTIM - CONVERT ASCII STRING TO BINARY TIME

The Convert ASCII String to Binary Time system service converts an
ASCII string to an absolute or delta time value in the system 64-bit
time format suitable for input to the Set Timer ($SETIMR) or Schedule
Wakeup (SSCHDWK) system services.

Macro Format:

$BINTIM timbuf ,timadr

High-Level Language Format:

SYSSBINTIM (timbuf ,timadr)

timbuf
address of a character string descriptor pointing to the buffer
containing the absolute or delta time to be converted. The
required formats of the ASCII strings are described in the Notes,
below.

If a delta time is specified, it must be less than 10,000 days.
timadr

address of a quadword that is to receive the converted time 1in
64-bit format.

Return Status:

SS$ NORMAL

Service successfully completed.

SS$_IVTIME
The syntax of the specified ASCII string is invalid, or the time
component is out of range.

Notes:

1. The $BINTIM service executes at the access mode of the caller
and does not check whether address arguments are accessible
before it executes. Therefore, an access violation causes an
exception condition if the input buffer or buffer descriptor
cannot be read or the output buffer cannot be written.

SYSTEM SERVICE DESCRIPTIONS
$BINTIM - CONVERT ASCII STRING TO BINARY TIME

The required ASCII input strings have the format:

Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

Delta Time: dddd hh:mm:ss.cc

Length
Field (Bytes) Contents Range of values
dd 2 day of month|{l - 31
- 1 hyphen Required syntax
mmm 3 month JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC
- 1 hyphen Required syntax
VYVYY 4 year 1858 - 9999
blank n blank Required syntax (one
or more blanks)
hh 2 hour 00 - 23
: 1 colon Required syntax
mm 2 minutes 00 - 59
: 1 colon Required syntax
ss 2 seconds 00 - 59
. 1 period Required syntax
cc 2 hundredths 00 - 99
of seconds
dddd 4 number of 0000 - 9999
days (in
24-hour
units)

The following syntax rules apply to the coding of the ASCII
input string:

Any of the fields of the date and time can be omitted.

For absolute time values, the $BINTIM service supplies
the current system date and time for nonspecified fields.
Trailing fields can be truncated. If leading fields are
omitted, the punctuation (hyphens, blanks, colons,
periods) must be specified. For example, the string

-- 12:00:00.00

results in an absolute time of 12:00 on the current day.

For delta time values, the S$BINTIM service defaultsi

nonspecified fields to 0. Trailing fields can be
truncated. If leading fields are omitted from the time
value, the punctuation (blanks, colons, periods) must be
specified. For example, the string

0 ::10
results in a delta time of 10 seconds.

For both absolute and delta time values, there can be any
number of leading blanks, and any number of blanks
between fields normally delimited by blanks. However,
there can be no embedded blanks within either the date or

time fields. i

» :/)'1

SYSTEM SERVICE DESCRIPTIONS
$BRDCST

4.8 $BRDCST - BROADCAST

The Broadcast system service writes a message to one or more
terminals.

Macro Format:

$BRDCST msgbuf, [devnam]

High-Level Language Format:

SYSSBRDCST (msgbuf, [devnam])

msgbuf ’

address of a character string descriptor pointing to the text of
the message to be broadcast. The maximum length of the message
is 250 bytes.

devnam .

address of a character string descriptor pointing to the name of
the terminal that is to receive the message. The string may be
either a physical device name or a logical name. If the first
character in the string is an underscore character (_), the name
is considered a physical device name. Otherwise, a single level
of logical name. translation "is performed and the equivalence
name, if any, is used.

If this argument is omitted, or specified as 0, then the message
is broadcast to all terminals.

If the first longword in the descriptor contains a 0, the message
is sent to all terminals that are currently allocated to
processes.

- Return Status:

SS$_NORMAL
Service successfully completed.

5S$_ACCVIO
The message buffer or buffer descriptor, or the device name
string or string descriptor, cannot be read by the caller.

SS$_DEVOFFLINE :
The specified terminal is offline, has disabled broadcast message
reception, has enabled passall mode, or is not a terminal.

SS$_EXQUOTA
The process has exceeded its buffer space gquota and has disabled
resource wait mode with the Set Resource Wait Mode ($SETRWM)
system service.

SS$_INSFMEM
Insufficient system dynamic memory is available to complete the
request and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SYSTEM SERVICE DESCRIPTIONS
$BRDCST - BROADCAST

SS$_NOPRIV
The process does not have the privilege to broadcast messages.

SS$_NOSUCHDEV

Warning. The specified terminal does not exist, or it cannot
receive the message.

Privilege Restrictions:

The user privilege OPER is required to broadcast a message to
more than one terminal, or to broadcast a message to a terminal
that is allocated to any other user.

Resources Required/Returned:

This service requires system dynamic memory, and uses the
process's buffered I/O byte count quota (BYTLM) to buffer the
message while the service executes.

Notes:

1. The service does not return control to the caller until all
specified terminals have received the broadcast message.

2. The message 1is displayed at all specified terminals
immediately, regardless of the current state of the terminal
(reading or writing). Each terminal is then returned to the
state it was in prior to the reception of the message. The
message is preceded and followed by a carriage return/line
feed.

However, a terminal cannot receive a broadcast message if it
is not in use-as an interactive terminal.

S’

SYSTEM SERVICE DESCRIPTIONS
$CANCEL

4.9 SCANCEL - CANCEL I/O ON CHANNEL
The Cancel I/0 On Channel system service cancels all pending 1I/0

requests on a specific channel. 1In general, this includes all I/O
requests that are queued as well as the request currently in progress.

Macro Format:

SCANCEL chan

High-Level Language Format:

SYSS$CANCEL (chan)

chan .
number of the I/O channel on which I/0 is to be canceled.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_EXQUOTA
The process has exceeded 1its quota for direct I/0 and has
disabled resource wait mode with the Set Resource Wait Mode
(SSETRWM) system service.

SS$_INSFMEM
Insufficient system dynamic memory is available to cancel the
I/0, and the process has disabled resource wait mode with the Set
Resource Wait Mode ($SSETRWM) system service.

SS$_IVCHAN
An invalid channel was specified, that is, a channel number of 0
or a number larger than the number of channels available.

SS$_NOPRIV

The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions:

I/0 can be canceled only from an access mode equal to or more
privileged than the access mode from which the original channel
assignment was made.

Resources Required/Returned:

The Cancel I/O On Channel system service requires system dynamic
memory and uses the process's direct I/0 limit (DIOLM) quota.

SYSTEM SERVICE DESCRIPTIONS
$CANCEL - CANCEL I/O ON CHANNEL

Notes:

1. When a request currently in progress is canceled, the driver
is notified immediately. Actual cancellation may or may not
occur immediately depending on the logical state of the
driver. When cancellation does occur, the same action as
that taken for queued requests is performed:

a. The specified event flag is set.

b. The first word of the I/O status block, if specified, is
set to SS$_CANCEL.

c. The AST, if specified, is queued.

Proper synchronization between this service and the actual
canceling of I/0 requests requires the issuing process to
wait for I/0 completion in the normal manner and then note
that the I/0 has been canceled.

2. If the I/0 operation is a virtual I/O operation involving a
disk or tape ACP, the I/O cannot be canceled. In the case of
a magnetic tape, however, cancellation may occur if the
device driver is hung.

3. Outstanding I/0 requests are automatically canceled at image
exit.

For an example of the $CANCEL system service and additional
information on system services that perform device-dependent I/O
operations, see Section 3.4, "Input/Output Services."

S—

SYSTEM SERVICE DESCRIPTIONS

$CANEXH

4.10 SCANEXH - CANCEL EXIT HANDLER

The Cancel Exit Handler system service deletes an exit control block
from the 1list of <control blocks for the calling access mode. Exit
control blocks are declared by the Declare Exit Handler ($SDCLEXH)
system service, and are queued according to access mode in a last-in
first-out order.

Macro Format:

SCANEXH [desblk]

High-Level Language Format:

SYSSCANEXH ([desblk])

desblk
address of the control block describing the exit handler to be
canceled. If not specified, or specified as 0, all exit control

blocks are canceled for the current access mode.

Return Status:

SS$_NORMAL
Service successfully completed.

SS8$ ACCVIO
T The first longword of the exit control block or the first
longword of a previous exit control block in the list cannot be
read by the caller, or the first longword of the preceding
control block cannot be written by the caller.

SS$_NOHANDLER
Warning. The exit handler specified does not exist.

SYSTEM SERVICE DESCRIPTIONS

$CANTIM

4.11 $CANTIM - CANCEL TIMER REQUEST

The Cancel Timer Request system service cancels all or a selected
subset of the Set Timer requests previously issued by the current
image executing in a process. Cancellation is based on the request
identification specified 1in the Set Timer ($SETIMR) system service.
If more than one timer request was given the same request
identification, they are all canceled.

Macro Format:

SCANTIM |[regidt] ,[acmode]

High-Level Language Format:

SYSSCANTIM([regidt] ,[acmode])

reqidt
request identification of the timer request(s) to be canceled. A
value of 0 (the default) indicates that all timer requests are to
be canceled.

acmode
access mode of the request(s) to be canceled. The access mode is
maximized with the access mode of the caller. Only those timer
requests issued from an access mode egual to or less privileged
than the resultant access mode are canceled.

Return Status:

S5$_NORMAL
Service successfully completed.

Privilege Restrictions:

Timer requests can be canceled only from access modes equal to or
more privileged than the access mode from which the requests were
issued.

Resources Required/Returned:

Canceled timer requests are restored to the process's quota for
timer queue entries (TQELM quota) .

Note:

OQutstanding timer requests are automatically canceled at image
exit.

For an example of the $CANTIM system service, and additional
information on timer scheduled requests, see Section 3.6, "Timer and
Time Conversion Services."

~—

N’

SYSTEM SERVICE DESCRIPTIONS
$CANWAK

4.12 $CANWAK - CANCEL WAKEUP

The Cancel Wakeup system service removes all scheduled wakeup reguests
for a process from the timer queue, including those made by the caller
or by other processes. Scheduled wakeup requests are made with the
Schedule Wakeup ($SCHDWK) system service.

Macro Format:

SCANWAK [pidadr] , [prcnam]

High-Level Language Format:

SYSSCANWAK ([pidadr] ,[prcnam])

pidadr
address of a longword containing the process identification of
the process for which wakeups are to be canceled.

prcnam
address of a character string descriptor pointing to the process
name string. The process name is implicitly qualified by the

group number of the process issuing the cancel wakeup request.

If neither a process identification nor a process name 1is specified,
scheduled wakeup requests for the caller are canceled. For details on
how the service interprets the PIDADR and PRCNAM arguments, see Table
3-3. Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

SS$_NORMAL
‘Service successfully completed.

SS$_ACCVIO
The process name string or string descriptor cannot be read, or
the process identification cannot be written;,; by the caller.

55$_IVLOGNAM
The process name string has a length of 0, or has more than 15
characters.

SS$_NONEXPR
Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV
The process does not have the privilege to cancel wakeups for the
specified process.

SYSTEM SERVICE DESCRIPTIONS
SCANWAK - CANCEL WAKEUP

Privilege Restrictions:

User privileges are required to cancel scheduled wakeup requests
for:

o Other processes in the same group (GROUP privilege)

° Any other process in the system (WORLD privilege)

Resources Required/Returned:

Canceled wakeup requests are restored to the process's AST limit
quota (ASTLM).

Notes:

1. Pending wakeup requests issued by the current image are
automatically canceled at image exit.

2. This service only cancels wakeup requests that have been
scheduled; it does not cancel wakeup requests made with the
Wake Process ($SWAKE) system service.

For an example of the SCANWAK system service, see Section 3.6, "Timer
and Time Conversion Services." For more information on process
hibernation and waking, see Section 3.5, "Process Control Services."

\ s

SYSTEM SERVICE DESCRIPTIONS

4.13 S$CLREF - CLEAR EVENT FLAG

$CLREF

The Clear Event Flag system service sets an event flag in a 1local or

common event flag cluster to 0.

Macro Format:

SCLREF efn

High-Level Language Format:

SYSSCLREF (efn)

efn
number of the event flag to be cleared.

Return Status:

SS$_WASCLR
Service successfully completed. The specified
previously 0.

SS$_WASSET
Service successfully completed. The specified
previously 1.

SS$_ILLEFC

An illegal event flag number was specified.

SSS_UNASEFC
The process is not associated with the cluster
specified event flag.

event flag was

event flag was

containing the

For an éxample of the $CLREF system service, see Section. 3.1,

"Event Flag Services."

SYSTEM SERVICE DESCRIPTIONS
$CMEXEC

4,14 SCMEXEC - CHANGE TO EXECUTIVE MODE
The Change to Executive Mode system service allows a process to change

its access mode to executive, execute a specified routine; and then
return to the access mode in effect before the call was issued.

Macro Format:

$SCMEXEC routin ,[arglst]

High-Level Language Format:

SYSSCMEXEC (routin , [arglst])

routin ‘
address of the routine to be executed in executive mode.

arglst

address of the argument list to be supplied to the routine, if
any.

Return Status:

SS$_NOPRIV
The process does not have the privilege to change mode to
executive.

All other values returned are from the routine executed.

Privilege Restrictions:

A process can call this service if:
e It has the user privilege CMEXEC.

° It is currently executing in either executive or kernel mode.

Note:

The $CMEXEC system service uses standard procedure calling
conventions to pass control to the specified routine. If no
argument list is specified, the argument pointer (AP) contains a
0, unless it 1is modified by the caller. The routine must exit
with a RET instruction.

N

—

S’

SYSTEM SERVICE DESCRIPTIONS

$CMKRNL

4.15 SCMKRNL - CHANGE TO KERNEL MODE
The Change to Kernel Mode system service allows a process to change

its access mode to kernel, execute a specified routine, and then
return to the access mode in effect before the call was issued.

Macro Format:

SCMKRNL routin ,[arglst]

High-Level Language Format:

SYSSCMKRNL (routin , [arglst])

routin
address of the routine to be executed in kernel mode.

arglst :

address of the argument list to be supplied to the routine, if
any.

Return Status:

SS$_NOPRIV _
The process does not have the privilege to change mode to kernel.

All other values returned are from the routine executed.

Privilege Restrictions:

A process can call this service if:
e It has the user privilege CMKRNL.

e It is currently executing in either executive or kernel mode.

Note:

The $CMKRNL system service uses standard procedure calling
conventions to pass control to the specified routine. If no
argument list is specified, the argument pointer (AP) contains a
0, unless it is modified by the caller. The routine must exit
with a RET instruction.

SYSTEM SERVICE DESCRIPTIONS

$SCNTREG

4.16 S$CNTREG - CONTRACT PROGRAM/CONTROL REGION

The Contract Program/Control Region system service deletes a specified
number of pages from the current end of the program or control region
of a process's virtual address space. The deleted pages become
inaccessible; any references to them cause access violations.

Macro Format:

$CNTREG pagcnt , [retadr] , [acmode] , [region]

High-Level Language Format:

SYSSCNTREG (pagcnt , [retadr] , [acmode] ,[region])

pagcnt _
number of pages to be deleted from the current end of the program
or control region.

retadr
address of a 2-longword array to receive the virtual addresses of
the starting page and ending page of the deleted area.

acmode
access mode of the owner of the pages to be deleted. The
specified access mode is maximized with the access mode of the
caller.

region
region indicator. A value of 0 (the default) indicates that the
program region (PO region) is to be contracted, and a value of 1
indicates that the control region (Pl region) is to be
contracted.

Return Status:

SS$_NORMAL
Service successfully completed.

S8$_ACCVIO
The return address array cannot be written by the caller.

SS$_ILLPAGCNT
The specified page count was less than 1.

SS$_PAGOWNVIO
A page in the specified range 1is owned by a more privileged
access mode.

g

N

Notes:

SYSTEM SERVICE DESCRIPTIONS
$CNTREG - CONTRACT PROGRAM/CONTROL REGION

If an error occurs while deleting pages, the return array, if
requested, indicates the pages that were successfully deleted
before the error occurred. If no pages were deleted, both
longwords in the return address array contain a -1.

The SCNTREG system service can delete pages only from the
current end of the process's program or control region. To
delete a specific range of pages in either region, use the
Delete Virtual Address Space (SDELTVA) system service.

For an example of the S$CNTREG system service and additional details on
page creation and deletion, see Section 3.8.2, "Increasing and
Decreasing Virtual Address Space."

—

SYSTEM SERVICE DESCRIPTIONS

$CRELOG

4.17 S$CRELOG - CREATE LOGICAL NAME

The Create Logical Name system service inserts a logical name and its
equivalence name into the process, group, or system logical name
table. If the logical name already exists in the respective table,
the new definition supersedes the old.

Macro Format:

$CRELOG [tblflg] ,lognam ,eqglnam , [acmode]

High-Level Language Format:

SYSSCRELOG ([tblflg] ,lognam ,eglnam , [acmode])

tblflg
logical name table number. A value of 0 indicates the system
table (this 1is the default value), 1 indicates the group table,
and 2 indicates the process logical name table.

lognam
address of a character string descriptor pointing to the logical

name string. (U'Hr"" wav

eglnam
address of a character string descriptor pointing to the
equivalence name string.

acmode
access mode to be associated with the logical name table entry.
Access modes only qualify names in the process logical name
table. The specified access mode is maximized with the access
mode of the caller.

Return Status:

SS$_NORMAL
Service successfully completed. A new name was entered in the
specified logical name table.

SS$_SUPERSEDE
Service successfully completed. A new equivalence name replaced
a previous equivalence name in the specified logical name table.

SS$_ACCVIO
The logical name or equivalence name string or string descriptor
cannot be read by the caller.

SS$_INSFMEM
Insufficient system dynamic memory is available to allocate a

group or system logical name table entry or the process has

exceeded its limit for process logical name table entries. The
code 1is only returned if the process has disabled resource wait
mode with the Set Resource Wait Mode (SSETRWM) system service.

SYSTEM SERVICE DESCRIPTIONS
$CRELOG - CREATE LOGICAL NAME

SS$_IVLOGNAM

The logical name or equivalence name string has a length of 0, or
has more than 63 characters.

SS$_IVLOGTAB
An invalid logical name table number was specified.

SS$_NOPRIV

The process does not have the privilege to place an entry in the
specified logical name table.

Privilege Restrictions:

The user privileges GRPNAM and SYSNAM are required to place

entries in the system and group logical name tables,
respectively.

Resources Required/Returned:

1. Up to 5 pages of memory are available in the control region
of a process's virtual address space to store names in the
process logical name table.

2. Creation of logical names for the group and system logical
name tables requires system dynamic memory.

Logical names can also be created from the command stream, with
the ASSIGN, DEFINE, ALLOCATE, and MOUNT commands.

For examples of the S$CRELOG system service, and details on logical
name translation and deletion, see Section 3.3, "Logical Name
Services."

SYSTEM SERVICE DESCRIPTIONS
$CREMBX

4.18 $CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL
The Create Mailbox and Assign Channel system service creates a virtual

mailbox device named MBn: and assigns an I/0 channel to it. The
system provides the unit number, n, when it creates the mailbox.

Macro Format:

SCREMBX [prmflg] ,chan ,[maxmsg] ,[bufquo] ,[promsk]
- ,lacmode] ,[lognam]

High-Level Language Format:

SYSSCREMBX ([prmflg] ,chan ,[maxmsg] , [bufquo] , [promsk]
, [acmode] ,[lognam])

prmflg ’

permanent indicator. A value of 1 indicates that 'a permanent
mailbox 1is to be created. The logical name, if specified, is
entered in the system logical name table. A value of 0 (the
default) indicates a temporary mailbox. The logical name, if
specified, is entered in the group logical name table.

chan
address of a word to receive the channel number assigned.

maxmsg
number indicating the maximum size of messages that can be sent
to the mailbox. If not specified, or specified as 0, the system
provides a default value.

bufquo
number of bytes of system dynamic memory that can be wused to
buffer messages sent to the mailbox. For a temporary mailbox,
"this value must be less than or equal to the process buffer
guota. If not specified, or specified as 0, the system provides
a default value.

promsk :

numeric value representing the protection mask for the mailbox.

The mask contains four 4-bit fields:

15 11 7 33 0

WORLD GROUP OWNER SYSTEM

Bits read from right to left in each field, when clear, indicate
that read, write, extend and delete privileges, in that order,
are granted to the particular category of user.

Only read and write privileges are meaningful for mailbox
protection.

If not specified, or specified as 0, read and write privileges
are granted to all users.

—

SYSTEM SERVICE DESCRIPTIONS
SCREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

acmode -
access mode to be associated with the channel to which the
mailbox 1is assigned. The access mode 1is maximized with the

access mode of the caller.

lognam

address of a character string descriptor pointing to the logical
name string for the mailbox. The logical name is entered into
the group logical name table (if it is a temporary mailbox) or
the system logical name table (if it is a permanent mailbox). In
either case, the MBn: name is entered as the equivalence name.
(the first character 1in the equivalence name string 1is an
underline character [_]). Processes can use the logical name to
assign I/0 channels to the mailbox.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_SUPERSEDE

Service successfully completed. A new equivalence name replaced
a previous equivalence name for the mailbox logical name.

SS$_ACCVIO
The logical name string or string descriptor cannot be read, or
the channel number cannot be written, by the caller.

SS$_EXQUOTA
The process has exceeded its buffered I/O byte count quota.

SS$_INSFMEM

Insufficient system dynamic¢ memory is available to complete the
service.

SS$_IVLOGNAM
The logical name string has a length of 0 or has more than 63
characters.

SS$_NOIOCHAN
No I/O channel is available for assignment.

SS$_NOPRIV
The process does not have the privilege to create either a
temporary or a permanent mailbox.

“Privilege Restrictions:

‘The user privileges TMPMBX and PRMMBX are required to create
temporary and permanent mailboxes, respectively.

SYSTEM SERVICE DESCRIPTIONS
$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

Resources Required/Returned:

1.

Notes:

1.

System dynamic memory is required for the allocation of a
device data base for the mailbox and for an entry in the
logical name table, if a logical name is specified.

When a temporary mailbox is created, the process's buffered
I/0 byte count (BYTLM) quota is reduced by the amount
specified in the BUFQUO argument. The size of the mailbox
unit control block, and the 1logical name (if one 1is
specified) are also subtracted from the quota. The gquota is
returned to the process ‘when the mailbox is deleted.

After a mailbox is created, the creating process and other
processes can assign additional channels to it by calling the
Assign I/0 Channel (SASSIGN) system service. The system
maintains a reference count of the number of channels
assigned to a mailbox; the count is decreased whenever a
channel is deassigned with the Deassign I/O Channel (SDASSGN)
system service or when the image that assigned the channel
exits. If it 1is a temporary mailbox, it is deleted when
there are no more channels assigned. Permanent mailboxes
must be explicitly marked for deletion with the Delete
Mailbox ($DELMBX) system service.

A mailbox is treated as a shareable device; it cannot,
however, be mounted or allocated.

Mailboxes are assigned sequentially increasing unit numbers
(from 1 to a maximum of 65,535) as they are created. When
all unit numbers have been used, the system starts numbering
again at unit 1.

A process can obtain the unit number of the created mailbox
by <calling the Get I/O Channel Information ($GETCHN) system
service.

Default values for the maximum message size and the buffer
quota (an appropriate multiple of the message size) are
determined for a specific system during system generation.

For an example of mailbox creation and input/output operations to it,
see Section 3.4.13, "Mailboxes."

S~

“\.._/'

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

4,19 S$CREPRC - CREATE PROCESS

The Create Process system service allows a process to create another
process. The created process can be either a subprocess or a detached
process. '

A detached process is a fully-independent process. For example, the
process that the system creates when a user logs in is a detached
process. A subprocess, on the other hand, is related to 1its creator
in a tree 1like structure; it receives a portion of the creating
process's resource quotas and must terminate before the «creating
process. The specification of the UIC argument controls whether the
created process is a subprocess or a detached process.

Macro Format:

SCREPRC [pidadr] ,[image] ,[input] ,[output] ,[error]
, [prvadr] ,[quotal] ,[prcnam] ,[baspril ,[uic]
, [mbxunt] ,[stsflg]

High-Level Language Format:

SYSSCREPRC ([pidadr] ,[image] ,[input] ,[output] , [error]
, [prvadr] ,[quotal ,[prcnam] ,[baspri] ,[uic]
, [mbxunt] ,[stsflg])

pidadr
address of a longword to receive the process identification
number assigned to the created process.

image
address of a character string descriptor pointing to the file
specification of the image to be activated in the created
process. The image name can have a maximum of 63 characters.

input
address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYSSINPUT in the logical name table for the created process. The
equivalence name string can have a maximum of 63 characters.

output
address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYSSOUTPUT in the logical name table for the «created process.
The equivalence name string can have a maximum of 63 characters.

error
address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYSSERROR in the logical name table for the created process. The
equivalence name string can have a maximum of 63 characters.

prvadr

address of a 64-bit mask defining privileges for the created
process. The mask is formed by ORing bit settings corresponding
to specific privileges. The $PRVDEF macro defines the following
symbolic names for the bit settings:

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

Name Privilege
PRVSV_ALLSPOOL Allocate a spooled device
PRVSV_BUGCHK Make bug check error log entries
PRVSV CMEXEC Change mode to executive
PRV$V_CMKRNL Change mode to kernel
PRVSV_DETACH Create detached processes
PRVSV DIAGNOSE Diagnose devices
PRV$V_EXQUOTA Exceed guotas
PRVSV_GROUP Group process control
PRVSV GRPNAM Place name in group logical

- name table
PRVSV LOG IO Perform logical I/0 operations
PRVSV_MOUNT Issue mount volume QIO
PRV$V_NETMBX Create a network device
PRVSV_NOACNT Create processes for which no accounting is

done

PRV$V_OPER All operator privileges
PRVSV_PHY IO Perform physical I/O operations
PRVSV PRMCEB Create permanent common

- event flag clusters
PRVSV_PRMGBL Create permanent global sections
PRVSV_PRMMBX Create permanent mailboxes
PRVSV_PSWAPM Change process swap mode
PRVSV_SETPRI Set any process priority
PRVSV_SETPRV Set any process privileges
PRVSV_SYSGBL Create system global sections
PRV$V SYSNAM Place name in system

- logical name table
PRVSV_TMPMBX Create temporary mailboxes
PRVSV_VOLPRO Override volume protection
PRVS$V_WORLD World process control

The user privilege SETPRV is required to grant a process any
privileges higher than one's own. 1If the caller does not have
this privilege, the mask is minimized with the current privileges
of the creating process, that is, any privileges the creator does
not have are not granted but no error status code is returned.

qguota
address of a list of values assigning resource quotas to the
created process. If no address is specified, or the address is
specified as 0, the system supplies default values for the
resource quotas.

The format of the quota list and considerations for specifying
quota values are described in Section 4.19.1. The specific
qguotas, their defaults, and their minimum values, are 1listed 1in
Section 4.19.2.

prcnam
address of a character string descriptor pointing to a 1- to
15-character process name string to be assigned to the created
process. The process name is implicitly qualified by the group
number of the caller, if a subprocess is created, or by the group
number in the UIC argument, if a detached process is created.

baspri
numeric value indicating the base priority to be assigned to the
created process. The priority must be in the range of 0 to 31,

where 31 is the highest priority level and 0 is the 1lowest.
Normal priorities are in the range 0 through 15, and
time-critical priorities are in the range 16 through 31.

SYSTEM SERVICE DESCRIPTIONS
$SCREPRC - CREATE PROCESS

If not specified, the base priority for the created process is 2.

The user privilege ALTPRI is required to set a priority higher
than one's own. If the caller does not have this privilege, the
specified base priority is compared with the caller's priority
and the lower of the two values is used.

uic
numeric value representing the user identification code (UIC) of
the created process. This argument also indicates whether a
process is a subprocess or a detached process.
If not specified, or specified as 0 (the default), it indicates
that the created process is a‘igggggcess; the subprocess has the
same UIC as the creator.
If a nonzero value is specified, it indicates that the created
process is a detached process. The specified value is
interpreted as a 32-bit octal number, with two 16-bit fields:

bits 0-15 member number
bits 16-31 group number

The user privilege DETACH 1is required to create a detached
process.

mbxunt
unit number of a mailbox to receive a termination message when
the created process is deleted. If not specified, or specified
as 0 (the default), the system sends no termination message when
it deletes the process. The format of the message is described
in Note 2, below.

stsflg

32-bit status flag indicating options selected for the created
process. The flag bits, when set, have the following meanings:

Bit Meaning

0 Disable resource wait mode
1 Enable system service failure exception mode
2 Inhibit process swapping (PSWAPM privilege required)
3 Do not perform accounting (NOACNT privilege required)
4 Batch (non-interactive) process '

5 Force process to hibernate before it executes the

image

6 Provide detached process executing LOGIN image with
authorization file attributes of the creator; do not
check authorization file

7 Process is a network connect object (NETMBX privilege
required)
8-31 Reserved. These bits must be 0.

Return Status:

SS$_NORMAL

Service successfully completed.

S58$_ACCVIO
The caller cannot read a specified input string or string
descriptor, the privilege 1list, or the quota list. Or, the
caller cannot write the process identification.

SYSTEM SERVICE DESCRIPTIONS
SCREPRC - CREATE PROCESS

SS$_DUPLNAM
The process name specified duplicates one already specified
within that group. :

SS$_EXQUOTA
1. The process has exceeded its quota for the «creation of
subprocesses.

2. A quota value specified for the creation of a subprocess
exceeds the creator's corresponding quota; or, the quota is
deductible and the remaining quota for the creator would be
less than the minimum.

SS$ INSFMEM
T Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$_IVLOGNAM
The specified process name has a length of 0 or has more than 15
characters.

SS$_IVQUOTAL
The quota list is not in the proper format.

SS$_IVSTSFLG
A reserved status flag was set.

SS$ NOPRIV

~ The caller has violated one of the privilege restrictions listed
below.

Privilege Restrictions:

User privileges are required to:
1. Create detached processes (DETACH privilege)

2. Set a created subprocess's base priority higher than one's
own (ALTPRI privilege)

3. Grant a process user privileges that the caller does not have
(SETPRV privilege))

4. Disable either process swap mode (PSWAPM privilege) or
accounting functions (NOACNT privilege) for the created
process »

5. Create a network connect object (NETMBX privilege)

Resources Required/Returned:

1. The number of subprocesses that a process can create is
controlled by the subprocess quota (PRCLM); the quota amount
is returned when a subprocess is deleted.

2. The Create Process system service requires system dynamic
memory.

N

e

\ .

S

Notes:

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

When a subprocess is created, certain of the quotas granted
to it either specifically or by default are deducted from the
quotas of the creator, and may be returned to the creator
when the subprocess is deleted. Sections 4.19.1 through
4.19.3 describe how quotas are determined in process
creation.

Some error conditions are not detected until the created
process executes. These conditions include an invalid or
nonexistent image; invalid SYSSINPUT, SYSSOUTPUT, or
SYSSERROR 1logical name equivalences; and inadequate guotas
or insufficient privilege to execute the requested image.

If a mailbox unit is specified, the mailbox is not used until
the <created process actually terminates. At that time, a
$SASSIGN system service is issued for the mailbox in the
context of the terminating process and an accounting message
is sent to the mailbox. 1If the mailbox no longer exists,
cannot be assigned, or is full, the error is treated as if no
mailbox had been specified.

The message is sent before the process rundown is initiated
but after the process name has been set to null. Thus, a
significant interval of time can occur between the sending of
the termination message and the final deletion of the
process.

To receive the message, the caller must issue a read to the
mailbox. When the I/0 completes, the second longword of the
I/0 status block, if one is specified, contains the process
identification of the deleted process.

Symbolic names for offsets of fields within the accounting
message are defined in the S$SACCDEF macro. The offsets, their
symbolic names, lengths, and the contents of each field are
listed below.

Offset Name Length Contents
0 ACC$W_MSGTYP word MSG$_DELPROC
2 word not used
4 ACCSL_FINALSTS longword Exit status code
8 ACCSL_PID longword Process identification
12 longword Not used
16 ACC$Q_TERMTIME quadword Current time in system
format at process
termination
24 ACCS$T_ACCOUNT 8 bytes Account name for
process, blank filled
32 ACCST_USERNAME 12 bytes User name, blank filled
44 ACCSL_CPUTIM longword CPU time used by the
process, in
10-millisecond units
48 ACCSL_PAGEFLTS longword Number of page faults

incurred by the process
in its lifetime

52 ACCSL_PGFLPEAK longword Peak paging file usage
56 ACCSL_WSPEAK longword Peak working set size
60 ACCSL_BIOCNT longword Count of buffered 1I/0

operations performed by
the process

SYSTEM SERVICE DESCRIPTIONS
SCREPRC - CREATE PROCESS

Offset Name Length Contents

64 ACCSL_DIOCNT longword Count of direct @ I/0
operations performed by
the process

68 ACCSL_VOLUMES longword Count of volumes mounted
by the process
72 ACCSQ LOGIN quadword Time "in system format
- that process logged in
80 ACCSL_OWNER longword Process identification
of owner

The length of the termination message 1is equated to the
constant ACC$K_TERMLEN.

3. All subprocesses created by a process must terminate before
the creating process can be deleted. If subprocesses exist
when their creator 1is deleted, they are automatically
deleted.

For examples of subprocess creation, termination mailboxes, and system
services that control the execution of processes, see Section 3.5,
"Process Control Services."

4.19.1 Format of the Quota List

The system defines specific resources that are controlled by quotas.
A guota limits the use of a particular system resource by a process.

The quota list addressed by the QUOTA argument of the $CREPRC system
service consists of consecutive quota values contained in longwords,
each preceded by a byte that indicates the quota type.

The S$PQLDEF macro defines symbolic names for the quotas in the format:
PQLS_type

The quota list is terminated by the type code PQL$_LISTEND. For
example, a quota list may be specified as:

QLIST: JBYTE POL$.FRCLM § LIMIT NUMBER OF SUBRFROCESSES
+LONG 2 § MAX = 2 SUBFROCESSES

+BYTE FQL$.ASTLM § LIMIT NUMBRER OF ASTS

+LONG 6 i MAX = 6 OUTSTANDING ASTS

+BYTE POL$_LISTEND § END OF QUOTA LIST

4.19.2 Quota Descriptions

The individual quota types are described below. Each description also
indicates the following characteristics of the quota:

° Minimum value. A process cannot be created if it does not
have a quota equal to or greater than this minimum.

® Default value. If the quota list does not specify a value
for a particular quota, the system assigns the process this
default value.

e

S——

SYSTEM SERVICE DESCRIPTIONS
SCREPRC - CREATE PROCESS

°® Deductible/Non-deductible. When a subprocess is created, the
value specified for a deductible quota is subtracted from the
current quota value of the creator, These quotas are
returned to the creating process when the subprocess is
deleted. Non-deductible quotas are not subtracted.

Quotas are never deducted from the creator when a detached
process is created.

Note that the minimum and default values listed are not necessarily
those provided at your installation; they are, however, the values
recommended for general use.

Section 4.19.3 describes how these characteristics may affect gquota
assignments.

PQLS ASTLM
TAST limit. This quota restricts both the number of outstanding
AST routines specified in system service calls that accept an AST
address and the number of scheduled wakeup requests that can be
issued.

Minimum: 2
Default: 10
Non-deductible

PQL$_BIOLM
Buffered I/0 limit. This quota limits the number of outstanding
system-buffered I/0 operations. A buffered I/O operation is one
which uses an intermediate buffer from the system pool rather
than a buffer specified in a process's $QIO request.

Minimum: 2 : R
Default: 6 RSN
Non-deductible

PQLS BYTLM
“Buffered I/0 byte count quota. This quota limits the amount of
system space that can be used to buffer I/O operations or to
create temporary mailboxes.

Minimum: 1024
Default: 10240
Deductible

PQLS CPULM
“CPU time limit. This gquota can be used to limit the total amount
of CPU time used by a process. If the quota is specified as 0,
there is no CPU time limit; the creating process, however, must
have unlimited CPU time 1itself in order to grant the created
process unlimited time.

If specified, the CPU time limit must be specified in units of 10
milliseconds. This quota is consumable; when the time limit has
been used, the process is deleted. If a subprocess 1is given
limited CPU time, the amount of time used is not returned to the
creator when the subprocess is deleted.

Minimums 0
Default: 0
Deductible

SYSTEM SERVICE DESCRIPTIONS
SCREPRC - CREATE PROCESS

PQLS DIOLM

' “Direct I/0 quota. This quota limits the number of outstanding
direct I/0O operations. A direct I/O operation is one for which
the system locks the pages containing the associated I/0 buffer
in memory for the duration of the I/O operation.

Minimum: 2
Default: 6
Non-deductible

PQLS_FILLM :
Open file quota. This quota limits the number of files that a
process can have open at one time.

Minimum: 2
Default: 20
Deductible

PQLS$ PGFLQUOTA
“Paging file quota. This quota limits the number of pages that
can be used to provide secondary storage in the paging file for a
process's execution.

Minimum: 256

Default: 10000

Deductible
PQLS_PRCLM

Subprocess quota. This quota limits the number of subprocesses a
process can create.

Minimum: 0

Default: 8

Deductible
PQL$_TQELM

Timer gqueue entry quota. This quota limits both the number of
timer queue requests a process can have outstanding and the
creation of temporary common event flag clusters.

Minimum: 0
Default: 8
Deductible TN

PQL$_WSDEFAULT
Default working set size. This quota defines the number of pages
in the default working set for any image executed by the process.
The maximum size that can be specified for this quota 1is
determined by the working set size quota.

Minimum: 10
Default: 100
Non-deductible

PQLS WSQUOTA .
“Working set size quota. This quota limits the maximum size to
which an image can expand its working set size with the Adjust
Working Set Limit (SADJWSL) system service.

Minimum: 10
Default: 200
Non-deductible

N’

N

SYSTEM SERVICE DESCRIPTIONS
SCREPRC - CREATE PROCESS

4.19.3 Quota Values

Values specified in the quota list are not necessarily the quotas that
actually be assigned to the created process. The $CREPRC system
service performs the following steps to determine the quota values
that will be assigned:

will

1.

2.

It constructs a default quota: list for the process being
created, assigning it the default values for all quotas.

It reads the specified quota list, if any, and updates the
corresponding items in the default list. If the quota list
contains multiple entries for a quota, only the last
specification is used.

For each item in the updated quota 1list, it compares the
quota value with the minimum value required for the guota and
uses the larger value.

If a subprocess is being created:

1. The resulting value is compared with the current value of
the corresponding gquota .of the creator. If the value
exceeds the creator's quota, the status code SS$_EXQUOTA
is returned and the subprocess is not created.

2. If the quota 1is a deductible quota, it deducts the
resulting value from the creator's quota and verifies
that the creator will still have at least the minimum
quota. required. If not, the status code SS$_EXQUOTA is
returned and the subprocess is not created.

If a detached process is created, the resulting values are
not -~compared with the creator's, nor are quotas deducted.
Moreover, the service does not check that a specified quota
value exceeds the maximum allowed by the system.

SYSTEM SERVICE DESCRIPTIONS

$CRETVA

4.20 SCRETVA - CREATE VIRTUAL ADDRESS SPACE
The Create Virtual Address Space system service adds a range of pages

to a process's virtual address space for the execution of the current
image.

Macro Format:

SCRETVA inadr ,[retadr] ,[acmode]

High-Level Language Format:

SYSSCRETVA (inadr , [retadr] ,[acmode])

inadr
address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be created. If the starting
and ending virtual addresses are the same, a single page is
created. Only the wvirtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr
address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually created.

acmode
access mode and protection for the new pages. The specified
access mode is maximized with the caller's access mode. The
protection of the pages is read/write for the resultant access
mode and those more privileged.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The input address array cannot be read, or the return address
array cannot be written, by the caller.

SS$_EXQUOTA
The process has exceeded its paging file quota.

S8$_INSFWSL
The process's working set limit is not large enough to
accommodate the increased size of the virtual address space.

SS$_NOPRIV »
A page in the specified range is in the system address space.

SS$ PAGOWNVIO
T A page in the specified range already exists and can not be
deleted because it is owned by a more privileged access mode than
that of the caller.

SS$_VASFULL

The process's virtual address space is full; no space is
available in the page tables for the requested pages.

4-44

S

SYSTEM SERVICE DESCRIPTIONS
$SCRETVA - CREATE VIRTUAL ADDRESS SPACE

Resources Required/Returned:

The processes paging file quota (PGFLQUOTA) and working set limit
guota (WSQUOTA) must be sufficient to accommodate the increased
size of the virtual address space.

Notes:

1. Pages are created starting at the address contained 1in the
first longword of the location addressed by the parameter
INADR and ending with the second longword. The ending
address can be lower than the starting address. The return
address array indicates the byte addresses of the pages
created.

2. If an error occurs while creating pages, the return array, if
requested, indicates the pages that were successfully created
before the error occurred. If no pages were created, both
longwords of the return address array contain a ~-1.

3. Each page to be created is first deleted, if necessary, and
then reinitialized to a demand-zero page.

The Expand Program/Control Region (SEXPREG) also adds pages to a
process's virtual address space. For additional details on page
creation and deletion, see Section 3.8.2, "Increasing and Decreasing
Virtual Address Space."

SYSTEM SERVICE DESCRIPTIONS

$CRMPSC

4.21 S$CRMPSC - CREATE AND MAP SECTION

The Create and Map Section system service identifies a disk file for
use as a global section or a private section and optionally makes the
correspondence between virtual blocks in the file and pages in the
caller's wvirtual address space. If the section already exists, the
service maps it. Depending on the actual operation requested, certain
arguments are required or optional. Table 4-1 summarizes how the
SCRMPSC system service interprets the arguments passed to it, -and
under what circumstances it requires or ignores arguments.

Macro Format:

SCRMPSC [inadr] ,[retadr] ,[acmode] ,[flags] ,[gsdnam] ,[ident]
»[relpag] ,[chan] ,[pagent] ,[vbn] ,[prot] ,[pfc]

High-Level Language Format:

nadr] ;[retadr] ,[acmode] ,[flags] , [gsdnam] , [ident]

SYSSCRMPSC ([1i
»[relpag] ,[chan] ,[pagcnt] ,[vbn] ,[prot] ,[pfc])

inadr
address of a 2-longword array containing the starting and ending
virtual addresses 1in the process's virtual address space into
which the section is to be mapped. If the starting and ending
virtual addresses are the same, a single page is mapped. Only
the virtual page number portion of the virtual addresses is used;
the low-order 9 bits are ignored.

If this argument is not specified, or specified as 0, the section
is not mapped.

retadr
address of a 2-longword array to receive the starting and ending
virtual addresses of the pages into which the section was
actually mapped.

acmode
access mode to be the owner of the pages created during the
mapping. The access mode is maximized with the access mode of
the caller. '

flags
mask defining the section type and characteristics. Flag bit
settings may be ORed together to override default attributes.
The $SECDEF macro defines symbolic names for the flag bits in the
mask. Their meanings, and the default values they override, are:

Flag Meaning Default Attribute
SECS$M_GBL Global section Private section
SECSM_CRF Pages are copy-on-reference Pages are shared
SECSM_DZRO Pages are demand-zero pages Pages are not zeroed
when copied
SECSM_WRT Read/write section Read-only
SECSM_PERM Permanent Temporary
SEC$M_SYSGBL System global section . Group global section

4-46

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC - CREATE AND MAP SECTION

gsdnam

ident

address of a character string descriptor pointing to the 1- to
15-character text name string for the global section. For group
global sections, the global section name is implicitly qualified
by the group number of the process creating the global section.

address of a quadword indicating the version number of a global
section, and, for processes mapping to an existing global
section, the criteria for matching the identification.

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits. Values
for these fields can be assigned by installation convention to
differentiate versions of global sections. If no version number
is specified when a section is created, processes that specify a
version number when mapping cannot access the global section.

The first longword specifies, in its 1low-order 3 bits, the
matching criteria. The wvalid values, symbolic names by which
they can be specified, and their meanings are:

Value/Name Match Criteria

0 SECSK_MATALL Match all versions of the section

1 SEC$SK_MATEQU Match only if major and minor identifications
match

2 SECSK_MATLEQ Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor

identification of the global section

The match control field is ignored when a section is created. 1If
no address is specified, or is specified as 0 (the default), the
version number and match control fields default to 0.

relpag »

relative page number within the section of the first page in the
section to be mapped. If not specified, or specified as 0 (the
default), the global section is mapped beginning with the first
virtual block in the file.

chan
number of the channel on which the file has been accessed. The
file must have been accessed with an RMS S$OPEN macro; the file
options parameter (FOP) in the FAB must indicate a user file open
(UFO keyword). The access mode at which the channel was opened
must be the same or less privileged than the access mode of the
caller.

pagcnt
number of pages in the section. The specified page count is
compared with the number of pages in the section file; if they
are different, the lower value is used. If the page count is not
specified, or specified as 0 (the default) the size of the
section file is used.

vbn

virtual block number in the file that marks the beginning of the
section. If not specified, or specified as 0 (the default) the
section is created beginning with the first virtual block in the
file.

SYSTEM SERVICE DESCRIPTIONS
SCRMPSC - CREATE AND MAP SECTION

prot
numeric value representing the protection mask to be applied to
the global section.
The mask contains four 4-bit fields¢
15 11 7 3 0
WORLD | GROUP | OWNER | SYSTEM
Bits read from right to left in each field, when clear, indicate
that read, write, execute, and delete privileges, in that order,
are granted to the particular category of user.
only read and write privileges are meaningful for global section
protection. :
If not specified, or specified as 0, read and write privileges
are granted to all users.
pfc

page fault cluster size. If specified, the cluster size
.indicates how many pages are to be brought into memory when a
page fault occurs for a single page.

Return Status:

SS$ NORMAL
Service successfully completed. The specified global section
already existed and has been mapped.

SS$ CREATED
Service successfully completed. The specified global section did
not previously. exist and has been created.

SS$ ACCVIO
The input address array or the global section name or name
descriptor cannot be read, or the return address array cannot be
written, by the caller.

SS$_ENDOFFILE
Warning. The starting virtual block number specified is beyond
the logical end-of-file.

SS$ GPTFULL
There is no more room in the system global page table to set up
page table entries for the section.

SS$_GSDFULL
There is no more room in the system space allocated to maintain
control information for global sections.

SS$_EXQUOTA
The process exceeded its paging file quota while creating
copy-on-reference pages.

SS$_INSFWSL
The process's working set 1limit 1is not large enough to
accommodate the increased size of the address space.

R

e

S—"

SYSTEM SERVICE DESCRIPTIONS
$SCRMPSC - CREATE AND MAP SECTION

Table 4-1

Arguments for the $SCRMPSC System Service

Create and

Create and

Map Global Map Globall Map Private

Argument Section Section Section
INADR Optional2 Required Required
RETADR Optional Optional Optional
ACMODE Optional Optional Optional
FLAGS

SECSM_GBL Required Ignored -

SECSM_CRF Optional Not used Optional

SEC$M_DZRO Optional Not used Optional

SEC$M_WRT Optional Optional Optional

SECSM_PERM Optional Not used Not used

SECSM_SYSGBL Optional Optional Not used
GSDNAM Required Required Not used
IDENT Optional Optional Not used
RELPAG Optional Optional Not used
CHAN Required Required
PAGCNT Required Required
VBN Optional Optional
PROT Optional Not used
PFC Optional Optional

1 rhe Map Global Section (SMGBLSC) system service

global section.

2 If the $CRMPSC system service is called to create, but not map,

maps an existing

global section, the global section must:' be permanent.

SS8$_IVCHAN

a

An invalid channel number was specified, that is a channel number

of 0 or a number larger than the number of channels available.

SS$_IVCHNLSEC

The channel number specified is currently active.

SS$_IVLOGNAM

The specified global section name has a length of 0, or has
than 15 characters.

SS$_IVSECFLG

An invalid flag has been specified.
been set, or one requiring a user privilege.

SS$_IVSECIDCTL

The match control field of the global section

invalid.

Either a reserved

more
flag has
identification is

SYSTEM SERVICE DESCRIPTIONS
SCRMPSC - CREATE AND MAP SECTION

SS$_NOPRIV
The process does not have the privilege to create a system global
section or a permanent group global section.

A page in the input address range is in the system address space.

The specified channel does not exist or was assigned from a more
privileged access mode.

SS$_PAGOWNVIO
A page in the specified input address range is owned by a more
privileged access mode.

SS$_SECTBLFUL
There are no entries - available in the system global section
table.

SS$_VASFULL
The process's virtual address space 1is full; no space is
available in the page tables for the pages created to contain the
mapped global section.

Privilege Restrictions:

The user privilege SYSGBL is required to create a system global
section; the PRMGBL privilege is required to create a permanent
global section.

Resources Required/Returned:

The process's working set 1limit quota (WSQUOTA) must be
sufficient to accommodate the increased size of the virtual
address space when mapping a section. If the section pages are
copy-on-reference, the process must also have sufficient paging
file quota (PGFLQUOTA).

Notes:

1. When the $SCRMPSC system service maps a section, it calls the
Create Virtual Address Space ($CRETVA) system service to add
the pages specified by the INADR argument to the process's
virtual address space. The specified virtual addresses can
be in the program (PO) region or the control (Pl) region.

If a global section is of an unknown size, a process can
obtain the virtual address of the first available page in its
program or control region from the Get Job/Process
Information (SGETJPI) system service and use the address
returned as the starting address in the input address array.
The ending address may be a very high address (if the seéection
is to be mapped in the program region) or a very low address
(if mapped in the control region). The $CRMPSC system
service returns the virtual addresses of the pages created in
the RETADR argument, if specified. The section is mapped
from a low address to a high address, regardless of whether
the section is mapped in the program or control region.

SYSTEM SERVICE DESCRIPTIONS
SCRMPSC - CREATE AND MAP SECTION

2, If an error occurs during the mapping of a global section,
the return address array, if specified, indicates the pages
that were successfully mapped when the error occurred. If no

pages were mapped, both longwords of the return address array
contain -1.

If the global section is permanent, it is not deleted if the
mapping operation fails.

For examples of the creation and mapping of private and global
sections, see Section 3.8.6, "Sections."

SYSTEM SERVICE DESCRIPTIONS

$DACEFC

4,22 $DACEFC - DISASSOCIATE COMMON EVENT FLAG CLUSTER

The Disassociate Common Event Flag Cluster system service releases the
calling process's association with a common event flag cluster.

Macro Format:

SDACEFC efn

High-Level Language Format:

SYSSDACEFC (efn)

efn

number of any event flag in the common cluster to be
disassociated. The flag number must be in the range of 64
through 95 for cluster 2 and 96 through 127 for cluster 3.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ILLEFC
An illegal event flag number was specified. The number must be
in the range of event flags 64 through 127.

Notes:

1.

The count of processes associated with the cluster is
decreased for each process that disassociates. When the
image that associated with a cluster exits, the system
performs an implicit disassociate for the cluster. When the
count of processes associated with a temporary cluster or a
permanent cluster marked for deletion reaches zero, the
cluster is automatically deleted.

If a process issues this service specifying an event flag
cluster with which it 1is not associated, the service
completes successfully.

For an example of the $DACEFC system service and a description of the

creation
"Common Event Flag Clusters."

3.1.4,

and association of common event flag clusters, see Section

i
N’

SYSTEM SERVICE DESCRIPTIONS

$DALLOC

4.23 S$DALLOC - DEALLOCATE DEVICE
The Deallocate Device system service deallocates a préviously

allocated device. Exclusive use by the 1issuing process is
relinquished and other processes can assign or allocate the device.

Macro Format:

SDALLOC [devnam] ,[acmode]

High-Level Language Format:

SYSS$DALLOC ([devnam] , [acmode])

devnam

address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character in the string is an
underline character (_), the name is considered a physical device
name. Otherwise, a single level of logical name translation 1is
performed and the equivalence name, if any, is used. The final
name, however, cannot contain a node name unless the name is that
of the host system.

If no device name is specified, all devices allocated by the
process from access modes equal to or less privileged than that
specified are deallocated.

acmode
access mode on behalf of which the deallocation 1is to be
performed. The access mode is maximized with the access mode of
the caller.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The device name string or string descriptor cannot be read by the
caller.

SS$_DEVASSIGN
Warning. The device cannot be deallocated because the process
still has channels assigned to it.

SS$_DEVNOTALLOC
Warning. The device is not allocated to the requesting process.

SS$_IVDEVNAM
No device name string was specified or the device name string
contains invalid characters.

S5$_IVLOGNAM
The device name string has a length of 0 or has more than 63
characters.

SYSTEM SERVICE DESCRIPTIONS
$DALLOC - DEALLOCATE DEVICE

SS $__NOPRIV
The device was allocated from a more privileged access mode.

SS$_NOSUCHDEV
Warning. The specified device does not exist in the host system.

Privilege Restrictions:

An allocated device can be deallocated only from access modes

equal to or more privileged than the access mode from which the
original allocation was made.

Notes:

1. A process cannot deallocate a device at any time. If, at the
time of deallocation, the issuing process has one or more I/O
channels assigned to the device, the device remains
allocated.

2. The system automatically deallocates all devices that were
allocated at user mode at image exit.

w
°

If an attempt is made to deallocate a mailbox, success is
returned but no operation is performed.

For an example of how to use this service and additional notes on
device allocation, see Section 3.4.9, "Device Allocation."

SN’

SYSTEM SERVICE DESCRIPTIONS

$DASSGN

4.24 $SDASSGN - DEASSIGN I/O CHANNEL

The Deassign I/O Channel system service releases an I/0 channel
acquired for input/output operations with the Assign I/0O Channel
(SASSIGN) system service.

Macro Format:

SDASSGN chan

High-Level Language Format:

SYSS$DASSGN (chan)

chan
number of the I/O channel to be deassigned.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_IVCHAN
An invalid channel number was specified; that 1is, a channel

number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV

The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions:

An I/O channel can be deassigned only from an access mode equal
to or more privileged than the access mode from which the
original channel assignment was made.

Notes:

1. When a channel is deassigned, any outstanding I/O requests on
the channel are canceled. 1If a file is open on the specified
channel, the file is closed.

2. If a mailbox was associated with the device when the channel
was assigned, the linkage to the mailbox is cleared if there
are no more channels assigned to the mailbox.

3. If the I/O channel was assigned for a network operation, the
network 1link is disconnected. For more information on
channel assignment and deassignment for network operations,
see the DECnet-VAX User's Guide.

SYSTEM SERVICE DESCRIPTIONS
$DASSGN - DEASSIGN I/O CHANNEL

4, 1If the specified channel is the last channel assigned to a
device that has been marked for dismounting, the device is

dismounted.
5. 1/0 channels are automatically deassigned at image exit.

For an example of the S$DASSGN system service and additional
information on channel assignment, see Section 3.4.1, "Assigning

Channels."

S

R

e

.
\v'

SYSTEM SERVICE DESCRIPTIONS
$DCLAST

4.25 $DCLAST - DECLARE AST
The Declare AST system service queues an AST for the calling or for a

less privileged access mode. For example, a routine executing in
supervisor mode can declare an AST for either supervisor or user mode.

Macro Format:

SDCLAST astadr ,[astprm] ,[acmode]

High-Level Language Format:

SYSSDCLAST (astadr , [astprm] , [acmodel)

astadr
address of the entry mask of the AST service routine.

astprm

value to be passed to the AST routine as an argument, if any.
acmode

access mode for which the AST is to be declared. This access

mode is maximized with the access mode of the caller. The
resultant mode is the access mode for which the AST is declared.

Return Status:

S5$_NORMAL
Service successfully completed.

SS$_EXQUOTA
The process has exceeded its AST limit quota.

SS$_INSFMEM
Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

Resources Required/Returned:

1. The Declare AST system service requires system dynamic
memory.

2. This service uses the process's AST limit quota (ASTLM).

Note:

The $DCLAST system service does not validate the address of the
AST service routine. If an 1illegal address, for example, an
address of 0, is specified, an access violation occurs when the
AST "service routine is given control.

For an example of the $DCLAST system service and notes and coding
conventions for AST service routines, see Section 3.2, "Asynchronous
System Trap (AST) Services."

SYSTEM SERVICE DESCRIPTIONS

$DCLCMH

4.26 $DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

Declare Change Mode or Compatibility Mode Handler ($DCLCMH) system
service establishes the address of a routine to receive control when
(1) a Change Mode to User or Change Mode to Supervisor instruction
trap occurs, or (2) a compatibility mode fault occurs.

Macro Format:

SDCLCMH addres ,[prvhnd] ,[typel

High-Level Language Format:

SYS$DCLCMH (addres , [prvhnd] , [typel)

addres
address of a routine to receive control when a change mode trap
or a compatibility mode fault occurs. An address of 0 clears a
previously declared handler.

prvhnd
address of a longword to receive the address of a previously
declared handler.

type
type indicator. If specified as 0 (the default), a change mode
handler is declared for the access mode at which the request is
issued. If specified as 1, a compatibility mode handler is
declared.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The longword to receive the address of the previous change mode
handler cannot be written by the caller.

Notes:

1. A change mode handler provides users with a dispatching
mechanism similar to that used for system service calls. It
allows a routine that executes 1in supervisor mode to be
called from user mode. The change mode handler is declared
from superv1sor mode; when the process is then executing in
user mode and issues a Change Mode to Supervisor instruction,
the change mode handler receives control, and executes in
supervisor mode.

2. Compatibility mode handlers are used by the operating system
to bypass normal condition handling procedures when an image
executing in compatibility mode incurs a compatibility mode
exception. '

SYSTEM SERVICE DESCRIPTIONS

$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

3.

4.

When the change mode or compatibility mode handler receives
control, the stack pointer points to the change mode code
specified in the change mode instruction or the compatibility
exception type code. On exit, the handler must remove the

code from the stack, then relinquish control with an REI
instruction. :

A change mode handler can be declared only from

user oOr
supervisor modes.

SYSTEM SERVICE DESCRIPTIONS

$DCLEXH

4.27 S$DCLEXH - DECLARE EXIT HANDLER

The Declare Exit Handler system service describes an exit handling
routine to receive control when an image exits. Image exit normally
occurs when the image currently executing in a process returns control
to the operating system. Image exit may also occur when the Exit
(SEXIT) or Force Exit (SFORCEX) system services are called.

Macro Format:

SDCLEXH desblk

High-Level Language Format:

SYSSDCLEXH (desblk)
desblk

address of a control block describing the exit handler. The exit
- control block has the formats

31 8 7 0

forward link

exit handler address

address to store reason for exit

additional arguments
> for exit handler, -
if any

The system fills in the first longword.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The first longword of the exit control block cannot be written by
the caller.

S5$_NOHANDLER

Warning. No exit handler control block address was specified;
or, the address specified is 0.

\V//

N’

Notes:

1.

3.

SYSTEM SERVICE DESCRIPTIONS
$DCLEXH - DECLARE EXIT HANDLER

Exit handlers are described by exit control blocks. The
operating system maintains a separate list of these control
blocks for user, supervisor, and executive modes. The
$DCLEXH system service adds the description of an exit
handler to the front of one of these lists. The actual list
to which the exit control block is added is determined by the
access mode of the caller.

This service can only be called from user, supervisor, and
executive modes.

At image exit, the exit handlers declared from user mode are
called first; they are called in the reverse order from
which they were declared.

Each exit handler is executed only once; it must be
redeclared before it can be executed again. The exit
handling routine is called as a normal procedure with the
argument list specified in the 3rd through nth longwords of
the exit control block. The first argument is the address of
a longword to receive a system status code indicating the
reason for exit; the system always fills in this longword
before calling the exit handler.

The Cancel Exit Handler (SCANEXH) removes an exit control
block from the list.

For an example of an exit control block and a description of the

action
Exit."

the system takes when an image exits, see Section 3.5.6, "Image

SYSTEM SERVICE DESCRIPTIONS
$DELLOG

4.28 S$SDELLOG - DELETE LOGICAL NAME

The Delete Logical Name system service deletes a logical name and its
equivalence name from the process, group, or system logical name
table.

Macro Format:

$DELLOG [tblflg] ,[lognam] ,[acmode]

High-Level Language Format:

SYSSDELLOG ([tblflg] ,[lognam] ,[acmode])

tblflg :
logical name table number. A value of 0 (the default) indicates
the system table, 1 indicates the group table, and 2 indicates
the process table.

lognam
address of a character string descriptor pointing to the logical
name string. If omitted, all logical names the process is
privileged to delete in the specified table are deleted.

acmode
access mode associated with the process logical name table entry.
The specified access mode is maximized with the access mode of
the caller; only the 1logical name entered at the resulting
access mode is deleted. This argument is used only for deleting
names from the process logical name table.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$ _ACCVIO

~ The ldgical name string or string descriptor cannot be read by
the caller.

SSS_IVLOGNAM
The logical name string has a length of 0, or has more than 63
characters.

SS$_IVLOGTAB
An invalid logical name table number was specified.

SS$ NOLOGNAM
" Either (1) the specified logical name does not exist in the
specified 1logical name table, or (2) the specified logical name
exists in the process logical name table but the entry was made
from a more privileged access mode.

SS$_NOPRIV
The process does not have the privilege to delete an entry from
the specified logical name table.

Ny

SYSTEM SERVICE DESCRIPTIONS
$DELLOG - DELETE LOGICAL NAME

Privilege Restrictions:

The user privileges GRPNAM and SYSNAM are required to delete

names from the group and system logical name tables,
respectively.

Resources Required/Returned:

1.

2.

Deletion of a logical name from the group or system table
returns storage to system dynamic memory.

When a logical name is deleted from the process logical name
table, the number of bytes in the control region of the
process's virtual address space required to maintain the
table entry become available for other process logical name
table entries.

Logical names can be deleted from the command stream with the
DEASSIGN command.

Names in the process logical name table that are qualified by
user mode are automatically deleted at image exit.

For an example of the $DELLOG system service and additional details on

logical

name creation and translation, see Section 3.3, "Logical Name

Services."

SYSTEM SERVICE DESCRIPTIONS

$DELMBX

N

4.29 $DELMBX - DELETE MAILBOX

The Delete Mailbox system service marks a permanent mailbox for
deletion. The actual deletion of the mailbox and of its associated
logical name assignment occur when no more I/O channels are assigned
to the mailbox.

Macro Format:

SDELMBX chan

High-Level Language Format:

SYSSDELMBX (chan)

chan . k
number of the channel assigned to the mailbox. |)

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_DEVNOTMBX
The specified channel is not assigned to a mailbox.

SSS IVCHAN)
T An invalid channel number was specified, that 1is, a channel
number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV
The specified channel is not assigned to a device, the process
does not have the privilege to delete a permanent mailbox, or the
access mode of the caller is less privileged than the access mode
from which the channel was assigned.

Privilege Restrictions:

1. The user privilege PRMMBX is required to delete a permanent
mailbox.

2. A mailbox can be deleted only from an access mode equal to or
more privileged than the access mode from which the mailbox
channel was assigned.

QR

Notes:

1.

For information on the creation and use of mailboxes,

3.4.13,

SYSTEM SERVICE DESCRIPTIONS
S$DELMBX - DELETE MAILBOX

Temporary mailboxes are automatically deleted when their
reference count goes to zero.

The SDELMBX system service does not deassign the channel
assigned by the caller, if any. The caller must deassign the

channel with the Deassign I/0 Channel (SDASSGN) system
service.

see Section
"Mailboxes."

4-65

SYSTEM SERVICE DESCRIPTIONS

$DELPRC

4.30 S$DELPRC - DELETE PROCESS

The Delete Process system service allows a process to delete itself or
another process.

Macro Format:

$DELPRC [pidadr] , [prcnam]

High-Level Language Format:

SYSSDELPRC ([pidadr] ,[prcnam])

pidadr
address of a longword containing the process identification of
the process to be deleted.

prcnam
address of a character string descriptor pointing to the process
name string. The process name is implicitly qualified by the
group number of the process issuing the delete.

If neither a process identification nor a process name is specified,
the caller is deleted and control is not returned. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 3-3.
Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The process name string or string descriptor cannot be read, or
the process identification cannot be written, by the caller.

SS$_INSFMEM
Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode (SSETRWM) system service.

SS$_NONEXPR _
Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV
The process does not have the privilege to delete the specified
process.

SYSTEM SERVICE DESCRIPTIONS
S$SDELPRC - DELETE PROCESS

Privilege Restrictions:

User privileges are required to delete:
o Other processes in the same group (GROUP privilege)

° Any process in the system (WORLD privilege)

Resources Required/Returned:

1. The Delete Process system service requires system dynamic
memory.

2. Deductible resource gquotas granted to subprocesses are
returned to the creator when the subprocesses are deleted.

1. When a subprocess is deleted, a terminaticn message is sent
to 1its creator, provided that the mailbox to receive the
message still exists and the creating process has access to
the mailbox. The termination message 1is sent before the
final rundown is initiated; thus, the creator may receive
the message before the process deletion is complete.

2. Due to the complexity of the required rundown operations, a
significant time interval occurs between a delete request and
the actual disappearance of the process. The Delete Process
service, however, returns immediately after initiating the
rundown operation. If subsequent delete requests are issued
for a process currently being deleted, the requests return
immediately with a return status code indicating successful
completion.

For a completé list of the actions performed by the system .when it
deletes a process, see Sections 3.5.6, "Image Exit" and 3.5.7,
"Process Deletion."

SYSTEM SERVICE DESCRIPTIONS

$SDELTVA

4.31 S$DELTVA - DELETE VIRTUAL ADDRESS SPACE g

The Delete Virtual Address Space system service deletes a range of
addresses from a process's virtual address space. Upon successful
completion of the service, the deleted pages are inaccessible; any
references to them cause access violations.

Macro Format:

SDELTVA inadr ,[retadr] ,[acmode]

High-Level Language Format:

SYSSDELTVA (inadr , [retadr] ,[acmode])

inadr
address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be deleted. If the starting
and ending virtual addresses are the same, a single page is
deleted. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored. ‘

. J

retadr

address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually deleted.

acmode. ‘ . .
access mode on behalf of which the service is to be performed. >
The specified access mode is maximized with the access mode of

the caller. The resultant access mode is wused to determine
whether the caller can actually delete the specified pages.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO)
The input address array cannot be read, or the return address
array cannot be written, by the caller.

SS$- NOPRIV
A page in the specifiéd range is in the system address space.

SS$_PAGOWNVIO

A page in the specified range is owned by an access mode more
privileged than the access mode of the caller.

Privilege Restrictions:

Pages can only be deleted from access modes equal to or more
privileged than the access mode of the owner of the pages.

Notes:

For

an

SYSTEM SERVICE DESCRIPTIONS
$DELTVA - DELETE VIRTUAL ADDRESS SPACE

The SDELTVA system service deletes pages starting at the
address contained in the second longword of the INADR array
and ending at the address in the first Jlongword. Thus, 1if
the same address array is used for the Create Virtual Address
Space (SCRETVA) as for the $DELTVA system service, the pages
are deleted 1in the reverse order from which they were
created.

If any of the pages in the specified range have already been
deleted or do not exist, the service continues as if the
pages were successfully deleted.

If an error occurs while deleting pages, the return array, if
requested, indicates the pages that were successfully deleted
before the error occurred. If no pages are deleted, both
longwords in the return address array contain a -1.

example of the $DELTVA system service and additional

information on page creation and deletion, see Section 3.8.2,
"Increasing and Decreasing Virtual Address Space."

SYSTEM SERVICE DESCRIPTIONS

$DGBLSC

4.32 S$DGBLSC - DELETE GLOBAL SECTION

The Delete Global Section system service marks an existing permanent
global section for deletion. The actual deletion of the global
section takes place when all processes that have mapped the global
section have deleted the mapped pages. .

Macro Format:

$DGBLSC [flags] ,gsdnam ,[ident]

High-Level Language Format:

SYSSDGBLSC ([flags] ,gsdnam ,[ident])

flags
mask indicating global section characteristics. The only
significant bit wused for the deletion of global sections is the
group/system flag. If this argument 1is specified as 0 (the
default), it indicates that the global section is a group global
section; 1if specified as SEC$M_SYSGBL, it indicates a system
global section.

gsdnam
address of a character string descriptor pointing to the 1- to
15-character text name of the global section to be deleted. For
group global sections, the global section name is implicitly
qualified by the group number of the caller.

ident -
address of a quadword indicating the version number of the global
section to delete and the matching criteria to be applied.

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits.

The first longword specifies, in the 1low-order 3 bits, the
matching criteria. The valid values, symbolic names by which
they can be specified, and their meanings are listed below:

Value/Name Match Criteria

0 SECSK_MATALL Match all versions of the section

1 SECSK_MATEQU Match only if major and minor identifications
match

2 SECSK_MATLEQ Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor

identification of the global section.

If no address is specified, or is specified as 0 (the default),
the version number and match control fields default to 0.

SYSTEM SERVICE DESCRIPTIONS
$DGBLSC - DELETE GLOBAL SECTION

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO .
The global section name or name descriptor or the section
identification field cannot be read by the caller.

SS$_IVLOGNAM

The global section name has a length of 0, or has more than 15
characters.

SS$_IVSECFLG
An invalid flag has been specified. Either a reserved flag has
been set, or one requiring a user privilege.

SS$_IVSECIDCTL
The section identification match control field is invalid.

SSS_NOPRIV
The caller does not have the privilege to delete a system global
section, or does not have read/write access to a group global
section.

SS$_NOSUCHSEC
Warning. The specified global section does not exist.

Privilege Restrictions:

The user privileges SYSGBL and PRMGBL are required to delete
system and permanent global sections, respectively.

Notes:

1. After a global section has been marked for deletion, any
process that attempts to map it receives the warning return
status code SS$_NOSUCHSEC.

2. Temporary global sections are automatically deleted when the
count of processes using the section goes to 0.

3. This service does not unmap a section from a process's
virtual address space. When a process no longer requires use
of a section, it can unmap the section by calling the Delete
Virtual Address Space ($DELTVA) system service to delete the
pages to which the section is mapped.

For information on the creation and use of sections, see Section
3.8.6, "Sections."

SYSTEM SERVICE DESCRIPTIONS

$DLCEFC

4.33 S$DLCEFC - DELETE COMMON EVENT FLAG CLUSTER

The Delete Common Event Flag Cluster system service marks a permanent
common event flag cluster for deletion. The cluster is actually
deleted when no more processes are associated with it.

Macro Format:

SDLCEFC name

High-Level Language Format:

SYSSDLCEFC (name)

name
address of a character string descriptor pointing to the 1- to
15-character text name of the cluster. The name is implicitly
qualified by the group number of the caller.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_IVLOGNAM

The cluster name string has a length of 0, or has more than 15
characters. -

SS$_NOPRIV

The process does not have the privilege to delete a permanent
common event flag cluster.

Privilege Restrictions:

The user privilege PRMCEB is required to delete permanent common
event flag clusters.

Notes:

1. The SDLCEFC system service does not perform an implicit
disassociate request for the caller. A process disassociates
with a cluster by calling the Disassociate Common Event Flag
Cluster (SDACEFC) system service. The system performs an
implicit disassociate for the cluster at image exit.

2. If the cluster has already been deleted or does not exist,
the S$DLCEFC service returns the status code SS$_NORMAL.

For an example of creating and using a common event flag cluster, see
Section 3.1.4, "Common Event Flag Clusters."”

SYSTEM SERVICE DESCRIPTIONS

SEXIT

4.34 S$EXIT - EXIT

The Exit system service is used by the operating system to initiate
image rundown when the current image in a process completes execution.
Control normally returns to the command interpreter.

Macro Format:

SEXIT [code]

High-Level Language Format:

SYSSEXIT ([code])

code
longword value to be saved in the process header as the
completion status of the current image. If not specified in a
macro call, a value of 1 is passed as the completion code. This
value can be tested at the command level to provide conditional
command execution.

Return Status:

No status codes are returned by this service because control is
not returned to the caller; rather, an exit to the command
interpreter is performed. ‘

Note:

For a complete list of the actions taken by the system at image
exit, see Section 3.5.6, "Image Exit."

SYSTEM SERVICE DESCRIPTIONS

$EXPREG

4,35 S$SEXPREG - EXPAND PROGRAM/CONTROL REGION

The Expand Program/Control Region system service adds a specified
number of new virtual pages to a process's program region or control
region for the execution of the current image. Expansion occurs at
the current end of that region's virtual address space.

Macro Format:

'SEXPREG pagcnt ,[retadr] ,[acmode] ,[region]

High-Level Language Format:

SYSSEXPREG (pagcnt , [retadr] ,[acmode] ,[region])

pagcnt
number of pages to add to the current end of the program or
control region.

retadr
address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually added.

acmode
access mode and protection for the new pages. The specified
access mode is maximized with the access mode of the caller. The
protection of the pages is read/write for the specified access
mode and more privileged access modes.

region
region indicator. A value of 0 (the default) indicates that the
program region (P00 region) 1is to be expanded. A value of 1
indicates that the control region (Pl region) is to be expanded.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The return address array cannot be written by the caller.

SS$_EXQUOTA
The process exceeded its paging file quota.

- SS$_ILLPAGCNT
The specified page count was less than 1.

SS$_INSFWSL
The process's working set 1limit 1is not 1large enough to
accommodate the increased virtual address space.

SS$_VASFULL
The process's virtual address space 1is full; no space is
available in the process page table for the requested regions.

S—

SYSTEM SERVICE DESCRIPTIONS
SEXPREG - EXPAND PROGRAM/CONTROL REGION

Resources Required/Returned:

The process's paging file quota (PGFLQUOTA) and working set limit
quota - (WSQUOTA) must be sufficient to accommodate the increased
size of the virtual address space.

Notes:

For

1.

2.

an

The new pages, which were previously inaccessible to the
process, are created as demand-zero pages.

Because the bottom of the user stack is normally located at
the end of the control region, expanding the control region
is equivalent to expanding the user stack. The effect is to
increase the available stack space by the specified number of
pages. .

The starting address returned is always the first available
page in the designated region; therefore, the ending address
is smaller than the starting address when the control region
is expanded and is larger than the starting address when the
program region is expanded.

If an error occurs while adding pages, the return address
array, if requested, indicates the pages that were
successfully added before the error occurred. If no pages
were added, both longwords of the return address array
contain a -1.)

The information returned in the 1location addressed by the
RETADR argument, if specified, can be used as the input range
to the Delete Virtual Address Space (SDELTVA) system service.
Pages can also be deleted with the Contract Program/Control
Region ($CNTREG) system service.

example of the S$EXPREG system service and additional

information on creating and deleting pages, see Section 3.8.2,
"Increasing and Decreasing Virtual Address Space."

SYSTEM SERVICE DESCRIPTIONS

$FAO

4.36 $FAO - FORMATTED ASCII OUTPUT
The Formatted ASCII Output system service converts binary values into
ASCII characters and returns the converted characters in an output
string. It can be used to:
° Insert variable character string data into an output string
] Convert binary values into the ASCII representations of their
decimal, hexadecimal, or octal equivalents and substitute the
results into an output string.
Sections 4.36.2 through 4.36.5 provide syntactical notes, lists of
valid FAO directives and parameters, and examples of using FAO.

Macro Format:

SFAO ctrstr ,[outlen] ,outbuf ,[pl] ,[p2] ..., [pn]

High-Level Language Format:

SYS$FAO (ctstr , [outlen] ,outbuf ,[pl] ,[p2] ...,[pn])

ctrstr ‘
address of a character string descriptor pointing to the control
string. The control string consists of the fixed text of the

output string and FAO directives.

outlen : :
address of a word to receive the actual length of the output
string returned.

outbuf
address of a character string descriptor pointing to the output
buffer. The fully formatted output string is returned in this
buffer.

pl - pn

directive parameters contained in longwords. Depending on the
directive, a parameter may be a value that is to be converted,
the address of the string that is to be inserted, or a length or
argument count. Each directive in the control string may require
a corresponding parameter or parameters.

Return Status:

SS$_BUFFEROVF
Service successfully completed. The formatted output string
overflowed the output buffer and has been truncated.

SS$_NORMAL
Service successfully completed.

SS$_BADPARAM '
An invalid directive was specified in the FAO control string.

SN

N—

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Notes:

1. The $FAO_S macro form wuses a PUSHL instruction for all
parameters (Pl through Pn) coded on the macro instruction;
if a symbolic address is specified, it must be preceded with
a pound sign (#) character or loaded into a register.

2. A maximum of 20 parameters can be specified on the SFAO macro
instruction. If more than 20 parameters are required, use
the $FAOL macro.

3. The $FAO system service executes at the access mode of the
caller and does not check whether address arguments are
accessible before it executes. Therefore, an access
violation causes an exception condition if an input field
cannot be read or an output field cannot be written. Note
that an access violation can occur if an invalid length is
specified for an argument, or if an FAO parameter is coded
incorrectly.

4.36.1 $FAOL - Formatted ASCII Output with List Parameter
The Formatted ASCII Output with List Parameter macro provides an

alternate way to specify input parameters for a call to the SFAO
system service.

Macro Format:

$FAOL ctrstr ,[outlen] ,outbuf ,prmlst

High-Level Language Format:

SYSSFAOL (ctrstr ,[outlen] ,outbuf ,prmlst)

ctrstr
address of a character string descriptor pointing to the control
string. The control string consists of the fixed text of the
output string and conversion directives.

outlen
address of a word to receive the actual length of the output
string returned.

outbuf
address of a character string descriptor pointing to the output
buffer. The fully formatted output string is returned in this
buffer.

prmlst
address of the parameter list of longwords to be used as Pl
through Pn.

The parameter list may be a data structure that already exists in
a program and from which certain values are to be extracted.

Return Status:

Same as for SFAO system service.

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

4.36.2 FAO Directives
An FAO directive has the format:
I1DD

! (exclamation mark) indicates that the following character or
characters are to be interpreted as an FAO directive.

DD is a 1l- or 2-character code indicating the action that FAO is
to perform. Each directive may require one or more input
parameters on the call to $SFAO. All directive codes for FAO
must be specified in uppercase letters.

Optionally, a directive may include:

° A repeat count

° An output field length

A repeat count is coded as follows:

In (DD)

where n is a decimal value instructing FAO to repeat the directive for
the specified number of parameters.

An output field length is specified as follows:
!lengthDD

where "length" is a decimal value instructing FAO to place the output
resulting from a directive into a field of "length" characters in the
output string.

A directive may contain both a repeat count and an output length, as
shown below:

!n(lengthDD)

Repeat counts and output field lengths may be specified as variables,
by wusing a # (number sign) in place of an absolute numeric value. If
a # is specified for a repeat count, the next parameter passed to FAO
must contain the count. If a # is specified for an output field
length, the next parameter must contain the length value.

If a variable output field length is specified with a repeat count,
only one length parameter is required; each output string will have
the specified length.

4.36.3 FAO Control String and Parameter Processing

An FAO control string may be any length and may contain any number of
FAO directives. The only restriction is on the use of the !
character (ASCII code "X21) in the control string. If a literal ! is
required in the output string, the directive !! provides an escape.

N

N .

. ,'
S~

e’

SYSTEM SERVICE DESCRIPTIONS
SFAO - FORMATTED ASCII OUTPUT

When FAO processes a control string, each character that is not part
of a directive is written into the output buffer. When a directive is
encountered, it is validated; if it is not a wvalid directive, FAO
terminates and returns an error status code. If the directive is
valid, and if it requires one or more parameters, the next consecutive
parameters specified are analyzed and processed.

FAO reads parameters from the argument list; it does not check the
number of arguments it has been passed. If there are not enough
parameters coded in the argument list, FAO will continue reading past
the end of the list. It is your responsibility, when coding a call to
$FAO, to ensure that there are enough parameters to satisfy the
requirements of all the directives in the control string.

4.36.4 Summary of FAO Directives and Output Field Length Defaults

Table 4-2 summarizes the FAO directives, and lists the parameter(s)
required by each directive. Table 4-3 summarizes how FAO determines
the length of each output field in the control string as it processes
directives and substitutes character strings in the control string
while formatting the output buffer. :

Examples in Section 4.36.5 describe in more detail how to use FAO.

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Summary of FAO Directives

Table 4-2

Directive Function Parameter(s)l
Character String Substitution
IAC Inserts a counted ASCII string Address of the string;

the first byte must
contain the length

!AD Inserts an ASCII string 1) Length of string
2) Address of string
IAF Inserts an ASCII string; 1) Length of string

Replaces all nonprintable
ASCII codes with periods (.)

2) Address of string

IAS Inserts an

ASCII string

Address of quadword
character string
descriptor pointing
to the string

Numeric Conversion (zero-filled)

10B Converts a
1ow Converts a
10L Converts a

byte to octal
word to octal
longword to octal

I1XB Converts a byte to hexadecimal

IXW Converts a word to hexadecimal

XL Converts a longword to hexadecimal
1ZB Converts an unsigned decimal byte

1ZW Converts an unsigned decimal word

1ZL Converts an unsigned decimal longword

Value to be converted to
ASCII representation

For byte or word
conversion, FAO uses only
the low-order byte or
word of the longword
parameter

Numeric Conversion (blank-filled)

1UB Converts an unsigned decimal byte

1UW Converts an unsigned decimal word

UL Converts an unsigned decimal longword
ISB Converts a signed decimal byte

I1SW Converts a signed decimal word

ISL Converts a signed decimal longword

Value to be converted to
ASCII representation

For byte or word
conversion, FAO uses only
the low-order byte or
word of the longword
parameter

1 1f a variable repeat count and/or a variable output field length is specified with a
directive, parameters indicating the count and/or length must precede other parameters

required by the directive.

—

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Table 4-2 (Cont.)

Summary of FAO Directives

Directive

Function

Parameter(s)l

Output String Formatting

1/ Inserts new: line (CR/LF) None
I Inserts a tab
1 Inserts a form feed
1! Inserts an exclamation mark
1%S Inserts the letter S if most recently
converted numeric value is not 1
LT Inserts the system time Address of a guadword time
value to be converted to
ASCII. If 0 is specified,
the current system time is
used.
13D Inserts the system date and time
In< Defines output field width of n None
D> characters. All data and
directives within delimiters are left-
justified and blank-filled within
the field
In*c Repeats the specified character in the
output string n times
Parameter Interpretation
1= Reuses last parameter in the list None

1+

Skips the next parameter in the list

1
directive,

If a variable repeat count and/or a variable output field length is specified

with

a

parameters indicating the count and/or length must precede other parameters
required by the directive.

SYSTEM SERVICE DESCRIPTIONS
$SFAO - FORMATTED ASCII OUTPUT

Table 4-3
How FAO Determines Output Field Lengths and Fill Characters

Conversion
/Substitution Type

‘Default Length

of Output Field

Action When Explicit
Output Field Length is
Longer than Default

Action When Explicit
Output Field Length is
Shorter than Default

Hexadecimal
Byte 2 (zero-filled) ASCII result is right-
Word 4 (zero-filled) justified and blank-
Longword 8 (zero-filled) filled to the specified

length

Octal Hexadecimal or octal
Byte 3 (zero-filled) output is always zero-
Word 6 (zero-filled) filled to the default
Longword 11 (zero-filled) output field length then

blank-filled to specified
length

ASCII result is
truncated on the
left

Signed or Unsigned
Decimal

As many characters
as necessary

ASCII result is right-
justified and blank-filled
to the specified length

Unsigned Zero-filled
Decimal

As many characters
as necessary

ASCII result is right-
justified and zero-filled
to the specified length

Signed and unsigned
decimal output fields
are completely filled
with asterisks(¥*)

ASCII String
Substitution

" Length of input

character string

ASCII string is left-
justified and blank-filled
to the specified length

ASCII string is
truncated on the
right

4-82

SYSTEM SERVICE DESCRIPTIONS
$SFAO - FORMATTED ASCII OUTPUT

4.36.5 FAO Examples

Each of the examples on the following pages shows an FAO control
string with several directives, parameters defined as input for the
directives, and the calls to S$FAO to format the output strings. The
numbered examples illustrate:

1. S$FAO macro, !AC, !AS, !AD, and !/ directives

2. SFAO macro, !!, and !AS directives, repeat count, output
field length :

3. S$FAO macro, !UL, !XL, !SL directives
4. S$FAOL macro, !UL, !XL, !SL directives

5. SFAOL macro, !UB, !XB, ISB directives

6. SFAO macro, !XW, !ZwW, !- directives, repeat count, output
field length

7. SFAOL macro, !AS, !UB, !%S, !- directives, variable repeat
count

8. SFAO macro, !n*c (repeat character), !%D directives

9. SFAO macro, !%D and !%T (with output field 1lengths), !In*
(with variable repeat count)

10. S$FAO macro, !< and !> (define field width), !AC, and !UL
directives

Each example is accompanied by notes, under the heading "Results".
These notes show the output string created by the call to $FAO and
describe in more detail some considerations for using directives. The
sample output strings show delta characters (A) in all places where
FAO output contains multiple blanks.

Each of the examples refers to the following output fields (these
fields are not shown in the data areas for each example):

FAODESC: .LONG 80 ;OUTPUT BUFFER DESCRIPTOR
. LONG FAOBUF ;ADDRESS OF BUFFER

FAOBUF: .BLKB 80 ; 80-CHARACTER BUFFER

FAOLEN: /(BLKW 1 ;RECEIVE LENGTH OF.OUTPUT
.BLKW 1 ;RESERVE WORD FOR $QIO

These examples assume that each call to $FAO will be followed by a
call to $QIO or to SOUTPUT to write the output string produced by FAO.
The $QIO system service (and the $OUTPUT macro) require that the
length be specified as a longword; therefore, an extra word is
provided following the word defined to receive the length of the
output string returned by S$FAO.

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Example 1

i CONTROL STRING AND INFUT FARAMETERS FOR EXAMFLE 1

SLEEFSTR! LESCRIFTOR <!/8ATLORS! 1AC 1AS 1ADx FCONTROL. STRING
WINKEN: ASCIC /WINKEN/ sCOUNTED ASCIT STRING
BLINKEN? DESCRIFTOR <RLINKENX F CHARACTER STRING DESCRIFTOR
NOI: +ASCIT /NODY/ FAGCTIT STRING

NODLEN? .LONG NODLEN-NOT sLENGTH OF ASCII STRING

¢ CALL TO $FAD

$FAD.S CTRSTR=SLEEFSTR OUTLEN=FAOLEN OUTEUF =FAODESC s
P1=fWINKENy F2s#ELINKEN s F3=NODLEN y F4=#NOD

Results:
$FAO writes the output string into FAOBUF:
SCR*CLF=SATLORS ! WINKEN EBLINKEN NOD

The !/ directive provides a carriage return/line feed character (shown
as <CR><XLF>) for terminal output.

The !AC directive requires the address of a counted ASCII string (Pl
argument) ; the number sign (#) is required to specify the parameter,
so that the PUSHL instruction wused by the $FAO macro pushes the
address rather than its contents.

The IAS directive requires the address of a character string
descriptor (P2 argument).

The !AD directive requires two parameters: the length of the string
to be substituted (P3 argument), and its address (P4 argument) .

i CONTROL STRING ANI' INFUT FARAMETERS FOR EXAMFLE 2

NAMESTR! DESCRIFTOR <UNARLE TO LOCATE !3(8AS)11x sCONTROL. STRING
JONES! DESCRIFTOR <JONES: sNAME DESCRIFTOR
HARRIS: DESCRIFTOR <HARRIS: FNAME DESCRIFTOR
WILSON? DESCRIFTOR <WILSON: §NAME DESCRIFTOR

3 CALL TO $FAD

$FA0.S CTRETR=NAMESTR» OUTLEN=FAOLEN QUTRUF=FAQRESC,~
F1=dJONESy PR=#HARRIS y F3=#WII.SON

Results:
$SFAO writes the output string into FAOBUF:

UNAELE TO LOCATE JONESAAAHARRISAAWILSONAA!
The !3(8AS) directive contains a repeat count: 3 parameters
(addresses of character string descriptors) are required. SFAO
left-justifies each string into a field of 8 characters (the output

field length specified).

The !! directive supplies a literal ! in the output.

p—

\\-//

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

If the directive were specified without an output field length, that
is, if the directive had been specified as !3(AS), the 3 output fields
would be concatenated, as follows:

UNABLE TO LOCATE JONESHARRISWILSON!

{Examples 3, 4, and 5

5 CONTROL STRINGS AND INFUT FARAMETERS FOR EXAMPLES 3. 4 AND O

LLONGSTR? SCONTROL STRING (LONGWORD CONVERSTON)
DESCRIFTOR <VALUES UL (DEC) !XL (HEX) 'Sl (SIGNEID X

RYTESTR? SCONTROL STRING (RYTE CONVERSTON)
DESCRIFTOR <VALUES TUER (DEC) !XE (HEX) 8B (SIGNEDD X

VAL.L: +L.ONG 200 SDECIMAL 200

vaL2: +LLONG 300 SNECTIMAL 300

VAL 3 « LONG =400 FNEGATIVE 400

§ CALL TO $FA0 (EXAMPLE 3)

$FA0.S CTRﬁTRmLUNGSTRvUUTBUFmFﬁUDESCvOUTLENwFAOLENyW
Fi=VAL1rF2=VAL2yF3=VAL3

Results:
SFAO writes the output string:
VALUES 200 (DECY 0000012C (HEX) ~400 (SIGNEID
The longword value 200 is converted to decimal, the wvalue 300 is
converted to hexadecimal, and the value -400 is converted to signed
decimal. The ASCII results of each conversion are placed in the
appropriate position in the output string. :
Note that the hexadecimal output string has 8 characters and 1is
zero-filled to the left. This is the default output length for
hexadecimal longwords. .
5 CALL TO $FA0 (EXAMFLE 4)
$FADL_S CTRETR=LONGSTRy OUTRUF=FAQDESCy OUTLEN=FADLENy -
FRMLST=VALI1
Results:
$SFAO writes the output string:
VALUES 200 (DEC) 0000012C (HEX) -400 (SIGNEID
The results are the same as the results of example 3. However,
instead of the $FAO macro, and coding each parameter on the call, the

S$FAOL macro points to the list of consecutive longwords, and FAO reads
from the list.

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

3 CALL TO $FA0 (EXAMFLE 5)

$FADL..S CTRSTR=RYTESTRs OUTLEN=FAOLENy OUTRUF=FAQDESCy~
FRMLST=VAL1

Results:
$FAO writes the output string:

VALUES 200 (DEC) 2C (HEX) 112 (SIGNEIN
The input parameters are the same as those for Example 4. However,
the control string (BYTESTR) specifies that byte values are to be
converted. FAO uses the low-order byte of each longword parameter

passed to it. The high-order 3 bytes are not evaluated. Compare
these results with the results of Example 4.

Example 6

CONTROL STRING FOR EXAMFLE &
MULTSTR: DESCRIFTOR <HEX?! !12(6XW) ZERO-DECE 12(-)12(7ZW) 5
§ CALL TO FaO

$FAD.S CTRSTR=MULTSTRs OUTLEN=FAOLEN s OUTRUF=FAODESC y ~
Fl1=%10000,F2=%999%

Results:
FAO writes the output string:
HEX$AAAZZTOAA270F ZERO-DEC: 00100000009999

Each of the directives !2(6XW) and !2(7ZW) contain repeat counts and
output lengths. First, FAO performs the !XW directive twice, using
the low-order word of the numeric parameters passed. The output
length specified is 2 characters longer than the default output field
width of hexadecimal word conversion, so 2 spaces are placed between
the resulting ASCII strings.

The !- directive causes FAO to back up over the parameter 1list. A
repeat count 1is specified with the directive, so that FAO skips back
over two parameters; then, it uses the same two parameters for the
I12W directive. The !ZwWw directive causes the output string to be
zero-filled to the specified length, in this example, 7 characters.
Thus, there are no blanks between the output fields.

S’

S—r

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Example 7

i CONTROL STRING AND INFUT FARAMETERS FOR EXAMFLE 7

ARGSTR: DESCRIFTOR <1AS8 RECEIVED 1UR ARGIZST -1E(4UR) >

LISTA: JLONG ORION FANDRESS OF NAME STRING
+LONG 3 FNUMBRER OF ARGS IN LIST
+LONG 10 FARGUMENT 1
+L.ONG 123 FARGUMENT 2
+LONG 210 §ARGUMENT 3

LISTE! .LONG LYRA FANDRESS OF NAME STRING
+LONG 1 §NUMBRER OF ARGS IN LIST

H +LLONG 255 s ARGUMENT 1
ORION: DESCRIFTOR <ORION: FFROCESS NAME
LLYRA? DESCRIFTOR <LYRAX sFROCESS NAME

CALLS TO FaO

$FAQL..S CTRSTR=ARGSTRy OUTLEN=FAOLENy OUTRUF=FAQDESC -
FRMLST=L.ISTA

$FAQL..S CTRETR=ARGSTR» OUTLEN=FAOLENy QUTBUF=FAODESCy
PRMLST=LISTE

Results:

Following the first call to $FAOL shown above, FAO writes the output
string:

ORION RECEIVED 3 ARGSIAAALO 123 210
Following the second call, FAO writes the output string:
LYRA RECEIVED 1 ARGIAARHS

In each of the examples, the PRMLST argument points to a different
parameter list; each 1list contains, 1in the first longword, the
address of a character string descriptor. The second longword begins
an argument list, with the number of arguments remaining in the list.
The control string uses this second longword twice: first to output
the value contained 1in the longword, and then to provide the repeat
count to output the number of arguments in the list (the !- directive
indicates that FAO should reuse the parameter).

The !%S directive provides a conditional plural. When the last value
converted has a value not equal to 1, FAO outputs an "S"; if the
value is a 1 (as in the second example), FAO does not output an "S".

The output field length defines a width of 4 characters for each byte
value converted, to provide spacing between the output fields.

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Example 8

i CONTROL STRING FOR EXAMFLE 8
TIMESTR: DESCRIFTOR ™° 15k NOW I8 txn-
§ CaLL TO $FAO0

$FAD.S CTRETR=TIMESTRy OUTLEN=FAQLEN» OUTEUF=FAQDDNESC » ~
Fl ek Q)
Results:

FAO writes the output string:
= NOW I8¢ dad-mmm-yuwy hhimmiss.co

where dd-mmm-yyyy is the current day, month, and year, and hh:mm:ss.cc
is the current time of day in hours, minutes, seconds, and hundredths
of seconds.

The !5*> directive requests FAO to write five greater than (>)
characters 1into the output string. Since there is a space after the
directive, FAO also writes a space after the > characters on output.

The !%D directive requires the address of a quadword time value, which
must be in the system time format. However, when the address of the
time value is specified as 0, FAO uses the current date and time. For
information on how to obtain system time values in the required
format, see Section 3.6, "Timer and Time Conversion Services." For a
detailed description of the ASCII date and time string returned, see
the discussion of the Convert Binary Time to ASCII String (SASCTIM)
system service in this chapter.

Example 9
7 CONTROL STRING FOR EXAMFLE 9
DAYTIMSTR: DESCRIFTOR <DATE: 'L1IXZDMEX.TIMES? 15XTH-
¥ CALL TO FAO
$FAN.LE CTRETR=DAYTIMSTRy OUTLEN=FAOLENy OUTBUF=FAQONESCy ~
Fl=#0yF2=%5yF3=%0
Results:
FAO writes the output string:
DATE?! dd-mmm—wwwg . TIME: hhimm
In this example, an output 1en§th of 11 bytes is specified with the
19D directive, so that FAO truncates the time from the date and time
string, and outputs only the date. ‘
The !#*_ directive requests that the underline character (_) be
repeated the number of times specified by the next parameter. Since
P2 is specified as 5, 5 underlines are written into the output string.
The !%T directive normally returns the full system time; in this
example, the I5%T directive provides an output length for the time;

only the hours and minutes fields of the time string are written into
the output buffer.

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Example 10

CONTROL STRING AND FARAMETERS FOR EXAMFLE 10

WIDTHSTR: DESCRIFTOR ~‘!25<VAR: !AC VAL: IULI>TOTALS!7UL’

VARINAME?! ASCIC /INVENTORY/ - FUARIARLE 1 NAME
VAR1? +LONG 334 § CURRENT VALUE
VARLITOT?! .LONG 6354 sVAR 1 TOTAL
VAR2NAME?! ASCIC /SALES/ FVAR 2 NAME
VAR2? +LONG 280 $ CURRENT VALUE
VAR2TOT ! .LONG 10750 sVAR 2 TOTAL

CALLS TO $FAD

$FAD.S CTRSTR=WINTHSTRy OUTLEN=FAOLENyOQUTRUF=FAQLESC ~
F1=#VARINAME » F2=VAR1 yF3=VARLITOT

$FA0.S CTRSTR=WINTHSTRy OUTLEN=FAOLEN QUTRUF=FADDESC, -
F1=#VARZNAME » F2=VAR2y F3=VARZTOT

Results:

Following the first call to FAO shown above, FAO writes the output
string:

VAR?: INVENTORY VAL: 334AATOTAL ! AAAGES4
After the second call, FAO writes the output string:
VAR! SALES vAL! 280AAAAAATOTAL I AALO750

The !25< directive requests an output field width of 25 characters;
the end of the field is delimited by the !> directive. Within the
field defined in the example above are two directives, !AC and !UL.
The strings substituted by these directives can vary in length, but
the entire field always has 25 characters.

The !7UL directive formats the longword passed in each example (P2
argument) and right-justifies the result in a 7-character output
field.

SYSTEM SERVICE DESCRIPTIONS

$FORCEX

4.37 S$SFORCEX - FORCE EXIT

The Force Exit system service causes an Exit (SEXIT) system service
call to be issued on behalf of a specified process.

Macro Format:

SFORCEX [pidadr] ,[prcnam] ,[code]

High-Level Language Format:

SYSSFORCEX ([pidadr] ,[prcnam] ,[codel])

pidadr
address of a longword containing the process identification of
the process to be forced to exit.

prcnam
address of a character strlng descriptor pointing to the process
name string. The name is implicitly qualified by the group
number of the process issuing the force exit request.

code
longword completion code value to be used as the exit parameter.
If not specified, a value of 0 is passed as the completion code.

If neither a process identification nor a process name 1is specified,
the caller is forced to exit and control is not returned. For details
on how the service interprets the PIDADR and PRCNAM arguments, see
Table 3-3. Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

S5$_ NORMAL
Service successfully completed.

SS8$_ACCVIO
The process name string or string descriptor cannot be read, or
the process identification cannot be written, by the caller.

SS$_NONEXPR
Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV
The process does not have the privilege to force an exit for the
specified process.

SS$ INSFMEM
Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode (SSETRWM) system service.

4-90

S’

SYSTEM SERVICE DESCRIPTIONS
SFORCEX - FORCE EXIT

Privilege Restrictions:

User privileges are required to force an exit for:

Other processes in the same group (GROUP privilege)

‘Any other process in the system (WORLD privilege)

Resources Required/Returned:

The Force Exit system service requires system dynamic memory.

Notes:

1.

The image executing in the target process follows normal exit
procedures. For example, if any exit handlers have been
specified, they gain control before the actual exit occurs.
Use the Delete Process ($DELPRC) system service if you do not
want a normal exit.

When a forced exit is requested for a process, a user mode
AST is queued for the target process. The AST routine
actually causes the Exit system service call to be issued by
the target process. Because the AST mechanism is used, user
mode ASTs must be enabled for the target process, or no exit
occurs until ASTs are re-enabled. The process that called
SFORCEX receives no notification that the exit is not being
performed.

The S$FORCEX system service completes successfully if a force
exit request is already in effect for the target process but
the exit is not yet completed.

For an example of the SFORCEX system service, and an explanation of
the actions performed by the system when an image exits, see Section

3.5.6,

"Image Exit."

SYSTEM SERVICE DESCRIPTIONS

$GETCHN

4.38 SGETCHN - GET I/O CHANNEL INFORMATION

The Get I/O Channel Information system service returns information
about a device to which an I/O channel has been assigned. Two sets of
information are optionally returned:

e The primary device characteristics

® The secondary device characteristics
In most cases the two sets of characteristic information are
identical. However, the two sets provide different information in the
following cases:

e If the device has an associated mailbox, the primary
characteristics are those of the assigned device and the
secondary characteristics are those of the associated mailbox.

e If the device is a spooled device, the primary characteristics
are those of the intermediate device and the secondary
characteristics are those of the spooled device.

e If the device represents a logical link on the network, the
secondary characteristics contain information about the link.

Macro Format:

SGETCHN chan , [prilen] ,[pribuf] ,[scdlen] , [scdbuf]

High-Level Language Format:

SYS$GETCHN (chan , [prilen] ,[pribuf] ,[scdlen] ,[scdbuf])

chan
number of the I/O channel assigned to the device.
prilen
address of a word to receive the length ©of the primary
characteristics.
pribuf
address of a character string descriptor pointing to the buffer
that 1is to receive the primary device characteristics. An
address of 0 (the default) implies that no buffer is specified.
scdlen
address of a word to receive the 1length of the secondary
characteristics.
scdbuf

address of a character string descriptor pointing to buffer that
is to receive the secondary device characteristics. An address
of 0 (the default) implies that no buffer is specified.

S’

N

S’

~

SYSTEM SERVICE DESCRIPTIONS
$GETCHN - GET I/O CHANNEL INFORMATION

Return Status:

SS$_BUFFEROVF
Service successfully completed. The device information returned
overflowed the buffer(s) provided and has been truncated.

SS$_NORMAL

Service successfully completed.
SS$_ACCVIO
: A buffer descriptor cannot be read, or a buffer or buffer length
cannot be written, by the caller.

SSS$ IVCHAN
— An invalid channel number was specified, that is, a channel
number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV

The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions:

The Get I/O Channel Information service can be performed only on
assigned channels and from access modes that are equal to or more
privileged than the access mode from which the original channel
assignment was made.

Note:
The Get I/O Device Information ($GETDEV) system service returns

the same information as the Get I/O Channel Information system
service.

4.38.1 Format of Device Information

The SGETCHN and S$GETDEV system services return information in a
user-supplied buffer. Symbolic names defined in the $DIBDEF macro
represent offsets from the beginning of the buffer. The length of the
buffer is defined in the constant DIB$K_LENGTH.

The field offset names, lengths, and contents are listed below.

Field Name Length (bytes) Contents

DIBSL_DEVCHAR Device characteristics

DIB$B_DEVCLASS Device class

DIB$SB_TYPE Device type

DIBSW_DEVBUFSIZ Device buffer size

DIBSL_DEVDEPEND Device dependent information
DIBSW_UNIT Unit number

DIBSW_DEVNAMOFF Offset to device name string

DIBSL PID Process identification of device owner

DIBSL_OWNUIC
DIBSW_VPROT
DIBSW_ERRCNT
DIB$L_OPCNT
DIBSW_VOLNAMOFF

UIC of device owner

Volume protection mask

Error count

Operation count

Offset to volume label string

NNOE NN RN NHFS

DIBSW_RECSIZ Blocked record size (valid for
magnetic tapes when DIBSW_VOLNAMOFF is
nonzero)

4-93

SYSTEM SERVICE DESCRIPTIONS
$GETCHN - GET I/O CHANNEL INFORMATION

The device name string and volume label string are returned 1in the
buffer as counted ASCII strings and must be located by using their
offsets from the beginning of the buffer.

Any fields inapplicable to a particular device are returned as zeros.
For further details on the contents of this buffer, and on

device~-dependent information returned, see the VAX/VMS I/O User's
Guide.

>
[}

94

SYSTEM SERVICE DESCRIPTIONS
$GETDEV

4.39 S$GETDEV - GET I/O DEVICE INFORMATION

The Get I/0 Device Information system service returns information
about an I/O device. This service allows a process to obtain
information about a device to which the process has not assigned a
channel. It returns the same information as the Get I/O Channel
Information (SGETCHN) system service, as described in Section 4.38.

Macro Format:

SGETDEV devnam , [prilen] ,[pribuf] ,[scdlen] ,[scdbuf]

High-Level Language Format:

SYSSGETDEV (devnam , [prilen] ,[pribuf] ,[scdlen] ,[scdbuf])

devnam
address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character in the string is an
underline character (), the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used.

prilen
address of a word to receive the length of the primary
characteristics.

pribuf
address of a character string descriptor pointing to the buffer
that is to receive the primary device characteristics. An
address of 0 (the default) implies that no buffer is specified.

scdlen
address of a word to receive the 1length of the secondary
characteristics.

scdbuf
address of a character string descriptor pointing to buffer that
is to receive the secondary device characteristics. An address
of 0 (the default) implies that no buffer is specified.

Return Status:

SS$_BUFFEROVF
Service successfully completed. The device information returned
overflowed the buffer(s) provided and has been truncated.

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

~ A buffer descriptor cannot be read, or a buffer or bufféer 1length
cannot be written, by the caller.

4-95

SYSTEM SERVICE DESCRIPTIONS
SGETDEV - GET I/0 DEVICE INFORMATION

SS$_IVDEVNAM
No device name was specified, or the device name string has
invalid characters.

SS$_IVLOGNAM
The device name string has a length of 0 or has more than 63
characters.

SS$_NONLOCAL
Warning. The device is on a remote system.

SSS_NOSUCHDEV
Warning. The specified device does not exist on the host system..

4-96

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

4,40 S$GETJPI - GET JOB/PROCESS INFORMATION

The Get Job/Process Information system service provides accounting,
status, and identification information about a specified process.

Macro Format:l

$GETJPI ,[pidadr] ,[prcnam] ,itmlst,,,

High-Level Language Format:l

SYSSGETJPI(, [pidadr] ,[prcnam] ,itmlst,,,)

pidadr)
address of a longword containing the process identification of
the process for which information is requested.

prcnam
address of a character string descriptor pointing to a 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the request.

itmlst
address of a list of item descriptors that describe the specific
information requested and point to buffers to receive the
information. The format of the 1list 1is described in Section
4.40.1. The item codes are listed in Table 4-4.,

If neither a process identification nor a process name 1is specified,

information about the calling process is returned. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 3-3.
Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

SS$ NORMAL
Service successfully completed.

SS$_BADPARAM
The item list contains an invalid identifier; or, the caller
requested information that is not in the process control block
about another process.

S5$_ACCVIO
The item list cannot be read, or the buffer 1length or buffer
cannot be written, by the caller.

SS$ IVLOGNAM
The process name string has a length of 0, or has more than 15
characters.

1l 1The first, fifth, sixth, and seventh arguments in the S$GETJPI
argument list are not used; they are reserved for future use.

4-97

SYSTEM SERVICE DESCRIPTIONS
$GETJPI - GET JOB/PROCESS INFORMATION

SS$_NONEXPR
Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV

The process does not have the privilege to obtain information
about the specified process.

Privilege Restrictions:

User privileges are required to obtain information about:
° Other processes in the same group (GROUP privilege)

® Any other process in the system (WORLD privilege)

‘Note:
When a process requests information about 'itself, information
contained in the PCB, in the process header, or in the control
region of the process's virtual address space can be obtained.

When a process requests information about another process, only
information contained in the PCB can be obtained.

" 4.40.1 Format of Item List for $GETJPI System Service

The item list used for input to the $GETJPI system service consists of
one or more consecutive item descriptors. Each item descriptor in
this list has the format:

31 16 15 0

item code B buffer length

buffer address

return length address

buffer length
length of the buffer to receive the specified information. All
buffers reserved to receive information should be longwords
unless otherwise indicated in Table 4-4.

item code
symbolic name defining the information to be returned. The
symbolic names have the format:
JPI$_code

These symbolic names are defined in the $JPIDEF macro. The codes
are listed in Table 4-4.

SYSTEM SERVICE DESCRIPTIONS
$GETJPI - GET JOB/PROCESS INFORMATION

buffer address
address of the buffer to receive the specified information. If
the buffer is too small for the requested information, $GETJPI
truncates it.

return length address
address of a word to receive the 1length of the information
returned. If this address 1is specified as 0, no length is
returned.

The list of item descriptors must be terminated by an item code of 0
or a longword of 0.

All buffers are zero-filled on return, if necessary.

For example, an item list can be coded as follows to obtain the
process identification and process name of a process:

GETLIST?!.WORD 4 FLENGTH OF RUFFER
+WORD JFIS.FID FREQUEST FID
+LONG GETFID FANDRESS TO RECEIVE FID
+LONG © FDON‘T NEED LENGTH RETURN
+WORD 13 sLENGTH OF BUFFER
+WORD JPI$..FRCNAM FREQUEST FROCESS NAME
+LLONG GETFRCNAM FADDRESS TO RECEIVE NAME
+LONG FRCNAM.LEN $ANDRESS TO RECEIVE LENGTH
+LONG O FEND OF GETLIST
GETFID?! .ELKL 1 FRETURN FID HERE
GETFRCNAM? - :
+BLKE 135 FRETURN FROCESS NAME HERE
FRCNAM.LEN? B4
+BLKW 1 JRETURN LENGTH OF FROCESS NAME

SYSTEM SERVICE DESCRIPTIONS
$GETJPI - GET JOB/PROCESS INFORMATION

Table 4-4

Item Codes for Job/Process Information

Item . Data 1)

Identifier Type Location™ {Information Returned

JPI$_ACCOUNT string |control |Account name string (1-8 characters) 5;;5’(?Z£,€>

JPIS$_APTCNT value |[PCB Active page table count

JPI$_ASTACT value |PCB Access modes with active ASTs

JPIS$_ASTCNT value PCB Remaining AST quota

JPI$_ASTEN value |PCB Access modes with ASTs enabled

JPI$_ASTLM value PHD AST limit quota

JPI$_BIOCNT value |PCB Remaining buffered I/O quota

JPI$_BIOLM value |PCB iBuffered I/0 limit quota

JPI$_BUFIO value PHD Count of process buffered I/0 opefations

JPI$_BYTCNT value PCB Remaining buffered I/0 byte count quota

JPIS$_BYTLM value PCB Buffered I/O byte count limit quota

JPIS_CPULIM value |PHD Limit on process CPU time

JPI$_CPUTIM value |PHD Accumulated CPU time (in l0-millisecond tics)

JPI$_CURPRIV value PHD Quadword mask of process's current privileges

JPIS$_DFPFC value PHD Default page fault cluster size

JPIS_DFWSCNT value PHD Default working set size

JPI$_DIOCNT value PCB Remaining direct I/0O quota

JPI$_DIOLM value PCB Direct I/O 1limit quota

JPIS$_DIRIO value |PHD Count of direct I/O operations for process

JPIS$_EFCS value |PCB Local event flags 0 through 31

JPIS$_EFCU value PCB Local event flags 32 through 63

JPI$_EFWM value |PCB Event flag wait mask

JPI§$_EXCVEC address|control |[Address of a 1list of exception vectors in _ the
following order: primary and secondary exception
vectors for kernel mode; primary and secondary
exception vectors for executive mode; primary and
secondary exception vectors for supervisor mode;
primary and secondary - exception vectors for user
mode

JPI$_FILCNT value PCB Remaining open file quota

JPIS_FILLM value PHD Open file quota

JPI$_FINALEXC address|control |Address of a list of final exception vectors for
kernel, executive, supervisor, then user access
mode

JPI$_FREPOVA value PHD First free page at end of program region

JPIS$_FREP1VA value PHD First free page at end of control region

1

In the Location column:

control indicates that the information is in the control region of the process's

virtual address space
PCB indicates that the information is in the process control block
PHD indicates that the information is in the process header

4-100

\~___/

SYSTEM SERVICE DESCRIPTIONS
$GETJPI - GET JOB/PROCESS INFORMATION

Table 4-4 (Cont.)
Item Codes for Job/Process Information

N

Item Data 1
Identifier Type Location™| Information Returned
JPI$_GPGCNT value PCB Global page count in working set
JPI$_GRP value | PCB Group number of UIC

JPIS$_LOGINTIM value control Process execution time; returned as 64-bit system
delta time value

JPIS$_MEM value | PCB Member number of UIC

JPIS_OWNER value | PCB Process identification of process owner "1 C%Gé)
JPI$_PAGEFLTS value PHD Count of page faults

JPI$_PGFLQUOTA | value PHD ’ Paging file quota

JPIS$_PID value PCB Process identification

JPI$_PPGCNT value PCB Process page count in working set

JPI$_PRCCNT value | PCB Count of supprocesses

JPI$_PR¢LM value PHD Subprocess quota

JPI$_PRCNAM string | PCB Process name (1-15 characters) 146 (:“CD 005433“
JPIS$_PRI value PCB Current process priority

JPI$_PRIB value PCB Process's base priority

JPI$_PROCPRIV value control Quadword mask of process's default privileges

.

JPIS$_STATE value PDB Process state

JPIS_STS value PCB Process status

JPIS$_TMBU value | PCB Termination mailbox unit number

JPI$_TQCNT value PCB Remaining timer queue entry quota

JPIS_TQLM value PHD Timer queue entry quota

JPI$_UIC value PCB Process's UIC 112 (30‘19 L‘:"g‘fg:{(
JPI$_USERNAME string| control User name string (1-12 characters) 5“‘;}' (Qaé C@g&,’?]?[
JPI$_VIRTPEAK | value control Peak virtual address size

JPI$_VOLUMES value control Count of currently mounted volumes

JPI$_WSAUTH value PHD Maximum authorized working set size

JPI$_WSPEAK value control Working set peak

JPI$_WSQUOTA value | PHD Working set size quota

JPI$_WSSIZE value PHD Process's current working set size

1

In the Location column:

control indicates that the information is in the control region’ of the process's
virtual address space

PCB indicates that the information is in the process control block

PHD indicates that the information is in the process header

T 5‘7S$’§u ang s JYTDEF . H

4-101

SYSTEM SERVICE DESCRIPTIONS

$GETMSG

4.41 S$GETMSG - GET MESSAGE

The Get Message system service transfers a message from the system
message file to the caller's buffer. This service is used by the
operating system to retrieve messages based on unique message
identifications and to prepare to output them.

Macro Format:

$GETMSG msgid ,msglen ,bufadr ,[flags] ,[outadr]

High-Level Language Format:

SYSSGETMSG (msgid ,msglen ,bufadr ,[flags] ,[outadr])

msgid
identification of the message to be retrieved. Each message in
the system message file has a unique identification, contained in
the high-order 29 bits of system longword status codes.

msglen
address of a word to receive the length of the string returned.

bufadr

address of a character string descriptor pointing to the buffer
to receive the message string. The maximum size of any message
that can be returned is 256 bytes.

flags

mask defining message content. The bits in the mask and their
meanings are:

Bit Value Meaning
0 1 Include text of message
0 Do not include text of message
1 1 Include message identifier
0 Do not include message identifier

2 1 Include severity indicator
0 Do not include severity indicator

Include facility name
Do not include facility name

w
[N]

If this argument is omitted in a MACRO service call, it defaults
to a value of 15, that is, all flags are set and all components
of the message are returned.

4-102

~

SYSTEM SERVICE DESCRIPTIONS
$GETMSG - GET MESSAGE

outadr
address of a 4-byte array to receive the following values:

Byte Contents
0 Reserved
1 Count of FAO arguments associated with message
2 User-specified value in message; if any
3 Reserved

Return Status:

SS$_BUFFEROVF :
Service successfully completed. The string returned overflowed
the buffer provided, and has been truncated.

SS$_MSGNOTFND

Service successfully completed. The message code does not have
an associated message in the file.

SS$_NORMAL
Service successfully completed.

4.41.1 Message Formats

The messagé identifications correspond to the symbolic names for
status codes returned by system components, for example SS$_code from
system services, RMS$_code for RMS messages, and so on.

When all bits in the FLAGS argument are set, $GETMSG returns a string
in the format:

facility-severity-msgcode message-text

where:
facility identifies the component of the operating system
severity is the severity code (the low-order three bits of
the status code)
msgcode is the unique message identifier

message-text is the text of the message

For example, if the MSGID argument is specified as:
MSGID=#SS$_DUPLNAM

SGETMSG returns the string:

$SYSTEM-F-DUPLNAM, duplicate process name

4-103

SYSTEM SERVICE DESCRIPTIONS

$GETTIM

4.42 S$GETTIM - GET TIME

The Get Time system service furnishes the current

system

time

in

64-bit format. The time is maintained in 100-nanosecond units from

the system base time.

Macro Format:

$SGETTIM timadr

High-Level Language Format:

SYSSGETTIM (timadr)
timadr

address of a quadword that is to receive
64-bit format.

Return Status:

SS$_NORMAL
Service successfully completed.

SS8$_ACCVIO

the

current

time

in

" The quadword to receive the time cannot be written by the caller.

Note:

For an example of the S$GETTIM system service,

‘and

details on the system time format, see Section 3.6,

Time Conversion Services." 3 Swz;

T

4-104

additional
"Timer and

e

SYSTEM SERVICE DESCRIPTIONS
$HIBER

4.43 SHIBER - HIBERNATE

The Hibernate system service allows a process to make itself inactive
but to remain known to the system so that it can be interrupted, for
example to receive ASTs.” A hibernate request is a wait-for-wake-event
request. When a wake is issued for a hibernating process with the
SWAKE system service or a result of a Schedule Wakeup ($SCHDWK) system
service, the process continues execution at the instruction following
the Hibernate call.

Macro Format: L

SHIBER_S

High-Level Language Format:

SYSSHIBER

Return Status:

SS$_NORMAL
Service successfully completed.

Notes:

1. A hibernating process can be swapped out of the balance set
if it is not locked into the balance set.

2. The wait state caused by this system service can be
interrupted by an asynchronous system trap (AST) if (1) the
access mode at which the AST is to execute is equal to or
more privileged than the access mode from which the hibernate
request was issued and (2) the process is enabled for ASTs at
that, access mode.

When the AST service routine completes execution, the system
re—executes the SHIBER system service on the process's '
behalf. If a wakeup request has been issued for the process
during the execution of the AST service routine (either by
itself or another process), the process resumes execution.
Otherwise, it continues to hibernate.

3. If one or more wakeup requests are issued for the process
while it is not hibernating, the next hibernate call returns
immediately, that is, the process does not hibernate. No
count is maintained of outstanding wakeup requests.

For an example of the SHIBER system service and additional information
on process hibernation, see Section 3.5.5, "Process Hibernation and
Suspension." For an example of scheduled wakeup requests, see Section
3.6.6, "Scheduled Wakeups." /

1 only the " _S" macro form is provided for the Hibernate system
service.

4-105

SYSTEM SERVICE DESCRIPTIONS

SINPUT

4.44 SINPUT - QUEUE INPUT REQUEST AND WAIT FOR EVENT FLAG

The SINPUT macro is a simplified form of the Queue I/0 Request and
Wait for Event Flag ($SQIOW) system service. This macro queues a
virtual input operation using the IO$ READVBLK function code and waits
for I/0 completion. -

Macro Format:

$INPUT chan ,length ,buffer ,[iosb] , [efn]

chan
number of the I/0 channel assigned to the device from which input
is to be read.

length
length of the input buffer.

buffer
address of the input buffer.

iosb
address of a quadword I/O status block.

efn
number of the event flag to be set when the request is complete.
The default is event flag 0.

Note:

The $INPUT macro has only one form. Arguments must be coded as
for the $name_s macro form, but " S" must not be included in the
macro call.

Return Status, Privilege Restrictions, Resources Required/Returned,
Additional Notes:

See the description of the Queue I/O Request ($SQI0) system
service.

4-106

S

N

\
. .

N .

SYSTEM SERVICE DESCRIPTIONS
SLCKPAG

4.45 SLCKPAG - LOCK PAGES IN MEMORY

The Lock Pages In Memory system service locks a page or range of pages
in ‘memory. The spec1f1ed virtual pages are forced into the working
set and then locked in memory. A locked page is not swapped with its
working set. These pages are not candidates for page replacement and
in this sense are locked in the working set as well.

Macro Format:

SLCKPAG inadr ,[retadr] ,[acmode]

High-Level Language Format:

SYSSLCKPAG (inadr ,[retadr]. , [acmode])

inadr .
address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be locked. 1If the starting and
ending virtual addresses are the same, a single page is 1locked.
Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

retadr

address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually locked.

acmode
access mode of the locked pages. The specified access mode 1is
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to lock the page.

Return Status:

SS$_WASCLR
Service successfully completed. All of the specified pages were
previously unlocked.

SS$_WASSET
Service successfully completed. At least one of the specified
pages was previously locked in memory.

SS$_ACCVIO

1. The input array cannot be read, or the output array cannot be
written, by the caller.

2. A page in the specified range is 1inaccessible or does not
exist.

SS$ LCKPAGFUL
The system—-defined maximum limit on the number of pages that can
be locked in memory has been reached.

SS$_NOPRIV
The process does not have the privilege to lock pages in memory.

4-107

SYSTEM SERVICE DESCRIPTIONS
SLCKPAG - LOCK PAGES IN MEMORY

Privilege Restrictions:

1.

The user privilege PSWAPM is required to 1lock pages in
memory.

The access mode of the caller must be equal to or more
privileged than the access mode of the owner of the pages
being locked. :

If more than one page is being locked, and it is necessary to
determine specifically which pages had been previously
locked, the pages should be locked one at a time.

If an error occurs while locking pages, the return array, if
requested, indicates the pages that were successfully locked
before the error occurred. If no pages are locked, both
longwords in the return address array contain a -1.

Pages that are locked in memory can be wunlocked with the

Unlock Pages from Memory ($ULKPAG) system service. Locked
pages are automatically unlocked at image exit. :

4-108

SYSTEM SERVICE DESCRIPTIONS
SLKWSET

4.46 SLKWSET - LOCK PAGES IN WORKING SET

The Lock Pages in Working Set system service allows a process to
specify that a group of pages that are heavily used should never be
replaced in the working set. The specified pages are brought into the
working set if they are not already there and are locked so that they
do not become candidates for replacement.

Macro Format:

SLKWSET inadr ,[retadr] ,[acmode]

High-Level Language Format:

SYSSLKWSET (inadr ,[retadr] ,[acmode])

inadr
address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be locked. If the starting and
ending virtual addresses are the same, a single page is locked.
Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

retadr
address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually locked.

acmode
access mode of the locked pages. The specified access mode is
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to lock the page.

Return Status:

SS$_WASCLR
Service successfully completed. All of the specified pages were
previously unlocked.

SS$_WASSET
Service successfully completed. At least one of the specified
pages was previously locked in the working set.

SS$_ACCVIO

1. The input address array cannot be read, or the output address
array cannot be written, by the caller.

2. A page in the specified range is inaccessible or nonexistent.

SS$ LKWSETFUL
~ The locked working set is full. 1If any more pages are locked,
there will not be enough dynamic pages available to continue
execution.

SS$_NOPRIV
A page in the specified range is in the system address space.

4-109

SYSTEM SERVICE DESCRIPTIONS
SLKWSET - LOCK PAGES IN WORKING SET

Privilege Restrictions:

The access mode of the caller must be equal to or more privileged
than the access mode of the owner of the pages being locked.

Notes:

1. If more than one page is being locked, and it is necessary to
determine specifically which pages had been previously
locked, the pages should be locked one at a time.

2. If an error occurs while locking pages, the return array, if
requested, indicates the pages that were successfully locked
before the error occurred. If no pages are locked, both
longwords in the return address array contain a -1.

3. Pages that are locked in the working set can be unlocked with
the Unlock Page from Working Set (SULWSET) system service.

For an explanation of the relationship between a process's working set

and its virtual address space, see Section 3.8, "Memory Management
Services."

4-110

Sy

SYSTEM SERVICE DESCRIPTIONS
$MGBLSC

4.47 S$MGBLSC - MAP GLOBAL SECTION

The Map Global Section provides a process with access to an existing
global section. Mapping a global section establishes the
correspondence between pages in the process's virtual address space
and the physical pages occupied by the global section.

Macro Format:

SMGBLSC inadr ,[retadr] ,[acmode] ,[flags] ,gsdnam ,[ident]
s [relpag]

High-Level Language Format:

SYSSMGBLSC (inadr ,[retadr] ,[acmode] ,[flags] ,gsdnam ,[ident]
, [relpagl)

inadr
address of a 2-longword array containing the starting and ending
virtual addresses 1in the process's virtual address space into
~which the section is to be mapped. The pages can be in the
program (P0) region or the control (Pl) region.

If the starting and ending virtual addresses are the same, a
single page is mapped. Only the virtual page number portion of
the virtual addresses is used; the low-order 9 bits are ignored.

retadr
address of a 2-longword array to receive the starting and ending
virtual addresses of the pages into which the section was
actually mapped.

acmode
access mode indicating the owner of the pages created during the
mapping. The access mode is maximized with the access mode of
the caller.

flags
mask defining the section type and characteristics. Flag bit
settings can be ORed together to override default attributes.
The flag bits for the mask are defined 1in the $SECDEF macro.
Their meanings, and the default values they override, are:

Flag Meaning Default Attribute

SECSM_WRT Map section read/write Map section read-only

SECSM_SYSGBL System global section Group global section
gsdnam

address of a character string descriptor pointing to the 1- to
15-character text name string for the global section. For group
global sections, the global section name is implicitly qua11f1ed
by the group number of the caller.

4-111

SYSTEM SERVICE DESCRIPTIONS
$MGBLSC - MAP GLOBAL SECTION

ident
address of a quadword indicating the version number of the global
section and the criteria for matching the identification.

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits.

The first longword specifies, in the 1low-order 3 bits, the
matching criteria. The wvalid values, symbolic names by which
they can be specified, and their meanings are listed below:

Value/Name Match Criteria

0 SEC$SK_MATALL Match all versions of the section

1 SECSK_MATEQU Match only if major and minor identifications
match

2 SECSK_MATLEQ Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor

identification of the global section

If no address is specified, or is specified as 0 (the default),
the version number and match control fields default to 0.

relpag
relative page number within the section of the first page to be
mapped. If not specified or specified as 0 (the default), the

global section is mapped beginning with the first wvirtual block
in the section.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$ ACCVIO
T The input address array, the global section name or name
descriptor or section identification field cannot be read, or the
return address array cannot be written, by the caller.

SS$_EXQUOTA
The process exceeded its paging file quota creating
copy-on-reference pages. .

SS$_INSFWSL
The process's working set 1limit is not large enough to
accommodate the increased virtual address space.

SS$_IVLOGNAM
The global section name has a length of 0, or has more than 15
characters.

SS$_IVSECFLG
A reserved flag was set.

S8$_IVSECIDCTL

The match control field of the global section identification is
invalid.

4-112

‘\-../"

S

'SYSTEM SERVICE DESCRIPTIONS
SMGBLSC - MAP GLOBAL SECTION

SS$ NOPRIV
~ The file protection mask specified when the global section was
created prohibits the access or the type of access requested by
the caller.

A page in the input address range is in the system address space.

SS$_NOSUCHSEC
Warning. The specified global section does not exist.

SS$_PAGOWNVIO _
A page in the specified input address range is owned by a more
privileged access mode.

SS$ VASFULL
T The process's virtual address space is full; no space is
available in the page tables for the pages created to contain the
mapped global section.

Privilege Restrictions:

The privilege to map a global section, and whether it may be
mapped read/write or read-only, is determined by the protection
mask assigned to the global section when it was created.

Resources Required/Returned:

The process's working set 1limit quota (WSQUOTA) must be
sufficient to accommodate the increased size of the virtual
address space when mapping a section. If the section pages are
copy-on-reference, the process must also have sufficient paging
file quota (PGFLQUOTA).

Notes:

1. When the S$MGBLSC system service maps a global section, it
calls the Create Virtual Address Space (SCRETVA) system
service to add the pages specified by the INADR argument to
the process's virtual address space.

If the global section is of an unknown size, the process can
obtain the virtual address of the first available page in the
program or control region from the Get Job/Process
Information ($GETJPI) system service and use the address
returned as the starting address. The ending address may be
a very high address (if the section is to be mapped in the
program region) or a very low address (if mapped in the
control region). The S$SCRMPSC system service returns the
virtual addresses of the pages created in the RETADR
argument, if specified. The section is mapped from a low
address to a high address, regardless of whether the section
is mapped in the program or control region.

2. If an error occurs during the mapping of a global section,
the return address array, if specified, indicates the pages
that were successfully mapped when the error occurred. If no
pages were mapped, both longwords of the return address array
contain -1.

For an example of the SMGBLSC system service, and additional details
on global section creation and use, see Section 3.8.6, "Sections."

4-113

SYSTEM SERVICE DESCRIPTIONS

$SNUMTIM

4.48 $NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

The Convert Binary Time to Numeric Time system service converts an
absolute or delta time from 64-bit system time format to binary
integer date and time values. The numeric time is placed 1in a
user—-specified buffer as illustrated in Figure 4-1.

31 16 15 0
month of year year since 0
hour of day day of month
second of minute minute of hour
hundredths of second {

Figure 4-1 Format of Numeric Time Buffer

Macro Format:

SNUMTIM timbuf ,[timadr]

High—Levei Language Format:

SYSSNUMTIM (timbuf , [timadr])

timbuf
address of a 7-word buffer to receive the date and time
information.

timadr

address of a 64-bit time value to be converted. If not
specified, or specified as 0, the current system time is used. A
positive time value represents an absolute time. A negative time
value indicates a delta time.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The 64-bit time value cannot be read, or the numeric buffer
specified cannot be written, by the caller.

SS$_IVTIME
The specified delta time is equal to or greater than 10,000 days.

4-114

R

SYSTEM SERVICE DESCRIPTIONS
$NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

Note:
If a delta time is specified, the year and month fields of the
information returned are zero. The day field contains the

- integer number of days specified by the delta time; it must be
less than 10,000 days.

4-115

SYSTEM SERVICE DESCRIPTIONS

SOUTPUT

4.49 S$OUTPUT - QUEUE OUTPUT REQUEST AND WAIT FOR EVENT FLAG

The $OUTPUT macro is a simplified form of the Queue I/0 Request and
Wait for Event Flag ($QIOW) system service. This macro performs a
virtual output operation using the IO$_WRITEVBLK function code and
waits for I/O completion.

Macro Format:

SOUTPUT chan ,length ,buffer ,[iosb] ,[efn]

chan
number of the I/O channel assigned to the device to which output
is to be written.
length
length of the output buffer.
buffer
address of the output buffer.
iosb
address of quadword I/O status block.
efn
number of the event flag to be set when the request is complete.
The default is event flag 0.
Note:

The S$OUTPUT macro has only one form. Arguments must be coded as
for the $name_S macro form, but " S" must not be included in the
macro call.

Return Status, Privilege Restrictions, Resources Required/Returned,
Additional Notes:

See the description of the Queue I/O Request (S$SQIO) system
service for details.

4-116

S’

S

S’

SYSTEM SERVICE DESCRIPTIONS
$PURGWS

4,50 S$PURGWS - PURGE WORKING SET

The Purge Working Set system service enables a process to remove pages
from its current working set to reduce the amount of physical memory
occupied by the current image.

Macro Format:

SPURGWS inadr

High-Level Language Format:

SYS$PURGWS (inadr)

inadr
address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be potentially purged from the
working set. The $PURGWS system services locates pages within
this range that are in the current working set and removes them.

If the starting and ending virtual addresses are the same, only
that single page 1is a candidate for purging. Only the virtual
page number portion of the virtual addresses is used; the
low—order 9 bits are ignored.

Return Status:

SS$_NORMAL
Service successfully completed.

SS5$_ACCVIO
The input address array cannot be read by the caller.

Note:
To purge the entire working set, the caller can specify a range
of pages from 0 through 7FFFFFFF. The image continues executing,

and pages that are needed are brought back into the working set
as the page faults occur.

4-117

SYSTEM SERVICE DESCRIPTIONS

$PUTMSG

4.51

$PUTMSG - PUT MESSAGE

The Put Message system service is a generalized message formatting and
output routine used by the operating system to write informational and
error messages to user processes.

Macro Format:

$PUTMSG msgvec ,[actrtn] ,[facnam]

High-Level Language Format:
SYSSPUTMSG (msgvec ,[actrtn] ,[facnam])

msgvec
address of a message argument vector that lists the message
identifications of messages to be output and FAO arguments
associated with each message, if any. The format of the message
vector is described in Section 4.51.1, below.

actrtn
address of the entry mask of a user-specified action routine to
receive control during message processing. The action routine
receives control after a message is formatted but before it is
actually written - to the wuser. If no address is specified, or
specified as 0 (the default), it 1indicates that there 1is no
action routine.

facnam

address of a character string descriptor pointing to the facility
name to be wused in the first or only message formatted by
SPUTMSG.

If not specified, the default facility name associated with the
message is used in the first message.

Return Status:

SS$_NORMAL

Note:

Service successfully completed.

The $PUTMSG system service disables AST delivery while it is
executing to prevent recursive entry.

4-118

-

SYSTEM SERVICE DESCRIPTIONS
$SPUTMSG - PUT MESSAGE

4.51.1 Format of the Message Argument Vector
The general format of a message argument Qector is as shown below.

Messages .with facility codes of either 0 (system status codes) or 1
(RMS status codes) vary from the basic format.

31 16 15 0

message flags argument count

first message identification

message flags FAO count

FAO arguments

&
—
¢

next message identification

argument count
specifies the total number of longwords in the message vector.

message flags
specifies a mask defining the portions of the message(s) to be
requested from the $GETMSG system service. If not specified,
$PUTMSG calls $GETMSG requesting that all fields in the message
text be returned. If a mask is specified, it is passed to
$GETMSG as the FLAGS argument. The bits in the mask and their
meanings are:

Bit Value Meaning
0 1 Include text of message
0 Do not include text of message
1 1 Include message identifier
0 Do not include message identifier
2 1 Include severity level indicator
0 Do not include severity level indicator
3 1 Include facility name
0 Do not include facility name

Bits 4 through 15 must be zeros.

first message identification
32-bit numeric value that uniquely identifies the first, or only,
message. Messages can be identified by symbolic names defined
for system return status codes, RMS status codes, and so on.

FAO count

number of FAO arguments, if any, that follow in the message
vector. The FAO argument count 1is required for all message
identifiers for which the facility code 1is other than 0 (the
system) or 1 (RMS). 1If a message with any other facility code
has no associated FAO arguments, the FAO argument count must be
specified as 0, unless the message identifier is the final item
in the message vector.

4-119

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG - PUT MESSAGE

message flags
new mask for the S$GETMSG flags, defining a new default for all
subsequent messages.

FAO arguments...
FAO arguments required by the message.

next message identification...
identification of next associated message, if messages are linked

in

a series. S$PUTMSG returns the first message with the percent

sign (%) prefix in front of the message. By convention, messages
after the first message in a series are prefixed with a hyphen

(=) .

Message identifications for system status codes, system exception
condition values, and RMS status codes are handled as follows:

1.

If the status code is a system message (that 1is, it has a
facility code of 0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>